PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (27)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy 
Stem cells (Dayton, Ohio)  2015;34(2):405-417.
Ataxia telangiectasia mutated (ATM) acts as a defense against a variety of bone marrow (BM) stressors. We hypothesized that ATM loss in BM-hematopoietic stem cells (HSCs) would be detrimental to both HSC function and microvascular repair while sustained ATM would be beneficial in disease models of diabetes. Chronic diabetes represents a condition associated with HSC depletion and inadequate vascular repair. Gender mismatched chimeras of ATM−/− on wild type background were generated and a cohort were made diabetic using streptozotocin (STZ). HSCs from the STZ-ATM−/−chimeras showed (a) reduced self-renewal; (b) decreased long-term repopulation; (c) depletion from the primitive endosteal niche; (d) myeloid bias; and (e) accelerated diabetic retinopathy (DR). To further test the significance of ATM in hematopoiesis and diabetes, we performed microarrays on circulating angiogenic cells, CD34+ cells, obtained from a unique cohort of human subjects with long-standing (>40 years duration) poorly controlled diabetes that were free of DR. Pathway analysis of microarrays in these individuals revealed DNA repair and cell-cycle regulation as the top networks with marked upregulation of ATM mRNA compared with CD34+ cells from diabetics with DR. In conclusion, our study highlights using rodent models and human subjects, the critical role of ATM in microvascular repair in DR.
doi:10.1002/stem.2235
PMCID: PMC5125377  PMID: 26502796
Diabetic retinopathy; Ataxia telangiectasia mutated; Hematopoietic stem cells
3.  Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy 
EBioMedicine  2016;11:138-150.
Activation of pro-inflammatory and pro-angiogenic pathways in the retina and the bone marrow contributes to pathogenesis of diabetic retinopathy. We identified miR-15a as key regulator of both pro-inflammatory and pro-angiogenic pathways through direct binding and inhibition of the central enzyme in the sphingolipid metabolism, ASM, and the pro-angiogenic growth factor, VEGF-A. miR-15a was downregulated in diabetic retina and bone marrow cells. Over-expression of miR-15a downregulated, and inhibition of miR-15a upregulated ASM and VEGF-A expression in retinal cells. In addition to retinal effects, migration and retinal vascular repair function was impaired in miR-15a inhibitor-treated circulating angiogenic cells (CAC). Diabetic mice overexpressing miR-15a under Tie-2 promoter had normalized retinal permeability compared to wild type littermates. Importantly, miR-15a overexpression led to modulation toward nondiabetic levels, rather than complete inhibition of ASM and VEGF-A providing therapeutic effect without detrimental consequences of ASM and VEGF-A deficiencies.
doi:10.1016/j.ebiom.2016.08.013
PMCID: PMC5049929  PMID: 27531575
Diabetic retinopathy; microRNA; Sphingolipids; Dyslipidemias; Vascular system injuries
4.  Regulation of Retinal Inflammation by Rhythmic Expression of MiR-146a in Diabetic Retina 
Purpose.
Chronic inflammation and dysregulation of circadian rhythmicity are involved in the pathogenesis of diabetic retinopathy. MicroRNAs (miRNAs) can regulate inflammation and circadian clock machinery. We tested the hypothesis that altered daily rhythm of miR-146a expression in diabetes contributes to retinal inflammation.
Methods.
Nondiabetic and STZ-induced diabetic rats kept in 12/12 light/dark cycle were killed every 2 hours over a 72-hour period. Human retinal endothelial cells (HRECs) were synchronized with dexamethasone. Expression of miR-146a, IL-1 receptor-associated kinase 1 (IRAK1), IL-1β, VEGF and ICAM-1, as well as clock genes was examined by real-time PCR and Western blot. To modulate expression levels of miR-146a, mimics and inhibitors were used.
Results.
Diabetes inhibited amplitude of negative arm (per1) and enhanced amplitude of the positive arm (bmal1) of clock machinery in retina. In addition to clock genes, miR-146a and its target gene IRAK1 also exhibited daily oscillations in antiphase; however, these patterns were lost in diabetic retina. This loss of rhythmic pattern was associated with an increase in ICAM-1, IL-β, and VEGF expression. Human retinal endothelial cells had robust miR-146a expression that followed circadian oscillation pattern; however, HRECs isolated from diabetic donors had reduced miR-146a amplitude but increased amplitude of IRAK1 and ICAM-1. In HRECs, miR-146a mimic or inhibitor caused 1.6- and 1.7-fold decrease or 1.5- and 1.6-fold increase, respectively, in mRNA and protein expression levels of ICAM-1 after 48 hours.
Conclusions.
Diabetes-induced dysregulation of daily rhythms of miR-146a and inflammatory pathways under miR-146a control have potential implications for the development of diabetic retinopathy.
Diabetes-induced dysregulation of daily rhythms of miR-146a and inflammatory pathways under miR-146a control have potential implications for the development of diabetic retinopathy.
doi:10.1167/iovs.13-13076
PMCID: PMC4073658  PMID: 24867582
diabetic retinopathy; miRNA; circadian rhythm; intercellular adhesion molecule 1; inflammatory response; endothelial cells
5.  Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy 
PLoS ONE  2016;11(1):e0146829.
Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.
doi:10.1371/journal.pone.0146829
PMCID: PMC4711951  PMID: 26760976
6.  The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models 
Diabetes  2011;60(9):2370-2378.
OBJECTIVE
Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study.
RESEARCH DESIGN AND METHODS
Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity was determined using Amplex Red sphingomyelinase assay. Caveolar lipid composition was analyzed by nano-electrospray ionization tandem mass spectrometry. Streptozotocin-induced diabetes and retinal ischemia-reperfusion models were used in in vivo studies.
RESULTS
We identify endothelial caveolae-associated ASM as an essential component in mediating inflammation and vascular pathology in in vivo and in vitro models of diabetic retinopathy. Human retinal endothelial cells (HREC), in contrast with glial and epithelial cells, express the plasma membrane form of ASM that overlaps with caveolin-1. Treatment of HREC with docosahexaenoic acid (DHA) specifically reduces expression of the caveolae-associated ASM, prevents a tumor necrosis factor-α–induced increase in the ceramide-to-sphingomyelin ratio in the caveolae, and inhibits cytokine-induced inflammatory signaling. ASM is expressed in both vascular and neuroretina; however, only vascular ASM is specifically increased in the retinas of animal models at the vasodegenerative phase of diabetic retinopathy. The absence of ASM in ASM−/− mice or inhibition of ASM activity by DHA prevents acellular capillary formation.
CONCLUSIONS
This is the first study demonstrating activation of ASM in the retinal vasculature of diabetic retinopathy animal models. Inhibition of ASM could be further explored as a potential therapeutic strategy in treating diabetic retinopathy.
doi:10.2337/db10-0550
PMCID: PMC3161322  PMID: 21771974
7.  Remodeling of Retinal Fatty Acids in an Animal Model of Diabetes 
Diabetes  2009;59(1):219-227.
OBJECTIVE
The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals.
RESEARCH DESIGN AND METHODS
Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3–6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry.
RESULTS
We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1.
CONCLUSIONS
This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation.
doi:10.2337/db09-0728
PMCID: PMC2797925  PMID: 19875612
8.  Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Downregulation of Sphingomyelinases by Docosahexaenoic Acid 
DHA downregulates basal and cytokine-induced ASMase and NSMase activity in human retinal endothelial cells, and inhibition of sphingomyelinases in endothelial cells prevents cytokine-induced inflammatory response.
Purpose.
The authors have previously demonstrated that DHA inhibits cytokine-induced inflammation in human retinal endothelial cells (HRECs), the resident vasculature affected by diabetic retinopathy. However, the anti-inflammatory mechanism of docosahexaenoic acid (DHA) is still not well understood. Sphingolipids represent a major component of membrane microdomains, and ceramide-enriched microdomains appear to be a prerequisite for inflammatory cytokine signaling. Acid sphingomyelinase (ASMase) and neutral sphingomyelinase (NSMase) are key regulatory enzymes of sphingolipid metabolism, promoting sphingomyelin hydrolysis to proinflammatory ceramide. The authors address the hypothesis that DHA inhibits cytokine-induced inflammatory signaling in HRECs by downregulating sphingomyelinases.
Methods.
ASMase and NSMase activity was determined by sphingomyelinase assay in primary cultures of HRECs. The expression of ASMase, NSMase, ICAM-1, and VCAM-1 was assessed by quantitative PCR and Western blot analysis. Gene silencing of ASMase and NSMase was obtained by siRNA treatment.
Results.
Inflammatory cytokines TNFα and IL-1β induced cellular adhesion molecule (CAM) expression and rapid increase in ASMase and NSMase activity in HRECs. DHA decreased basal and cytokine-induced ASMase and NSMase expression and activity and the upregulation of CAM expression. Anti-inflammatory effects of DHA on cytokine-induced CAM expression were mimicked by inhibition/gene silencing of ASMase and NSMase. The sphingomyelinase pathway rather than ceramide de novo synthesis pathway was important for inflammatory signaling in HRECs.
Conclusions.
This study provides a novel potential mechanism for the anti-inflammatory effect of DHA in HRECs. DHA downregulates the basal and cytokine-induced ASMase and NSMase expression and activity level in HRECs, and inhibition of sphingomyelinases in endothelial cells prevents cytokine-induced inflammatory response.
doi:10.1167/iovs.09-4731
PMCID: PMC2891477  PMID: 20071681
9.  Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock 
The Journal of Experimental Medicine  2009;206(13):2897-2906.
The present epidemic of diabetes is resulting in a worldwide increase in cardiovascular and microvascular complications including retinopathy. Current thinking has focused on local influences in the retina as being responsible for development of this diabetic complication. However, the contribution of circulating cells in maintenance, repair, and dysfunction of the vasculature is now becoming appreciated. Diabetic individuals have fewer endothelial progenitor cells (EPCs) in their circulation and these cells have diminished migratory potential, which contributes to their decreased reparative capacity. Using a rat model of type 2 diabetes, we show that the decrease in EPC release from diabetic bone marrow is caused by bone marrow neuropathy and that these changes precede the development of diabetic retinopathy. In rats that had diabetes for 4 mo, we observed a dramatic reduction in the number of nerve terminal endings in the bone marrow. Denervation was accompanied by increased numbers of EPCs within the bone marrow but decreased numbers in circulation. Furthermore, denervation was accompanied by a loss of circadian release of EPCs and a marked reduction in clock gene expression in the retina and in EPCs themselves. This reduction in the circadian peak of EPC release led to diminished reparative capacity, resulting in the development of the hallmark feature of diabetic retinopathy, acellular retinal capillaries. Thus, for the first time, diabetic retinopathy is related to neuropathy of the bone marrow. This novel finding shows that bone marrow denervation represents a new therapeutic target for treatment of diabetic vascular complications.
doi:10.1084/jem.20090889
PMCID: PMC2806461  PMID: 19934019
10.  Anti-inflammatory Effect of Docosahexaenoic Acid on Cytokine-Induced Adhesion Molecule Expression in Human Retinal Vascular Endothelial Cells 
Purpose.
Docosahexaenoic acid (DHA22:6n3), the principal n3-polyunsaturated fatty acid (PUFA) in the retina, has been shown to have a pronounced anti-inflammatory effect in numerous in vivo and in vitro studies. Despite the importance of vascular inflammation in diabetic retinopathy, the anti-inflammatory role of DHA22:6n3 in cytokine-stimulated human retinal vascular endothelial cells (hRVECs) has not been addressed.
Methods.
Cytokine-induced expression of cell adhesion molecules (CAMs) was assessed by Western blot. The effect of DHA22:6n3 on cytokine-induced nuclear factor (NF)-κB signaling was analyzed by Western blot analysis and electrophoretic mobility shift assay (EMSA).
Results.
Stimulation of hRVECs with VEGF165, TNFα, or IL-1β for 6 to 24 hours caused significant induction of intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Pretreatment of the cells with 100 μM of BSA-bound DHA22:6n3 for 24 hours remarkably inhibited cytokine-induced CAM expression. IL-1β, TNFα, and VEGF165 induced nuclear translocation and binding of p65 and p50 NF-κB isoforms to the VCAM-1 promoter. DHA22:6n3 pretreatment inhibited cytokine-induced NF-κB binding by 25% to 40%. Moreover, DHA22:6n3 diminished IL-1β induced phosphorylation of the inhibitor of nuclear factor (NF)-κB (I-κBα), thus preventing its degradation.
Conclusions.
IL-1β, TNFα, and VEGF165 induced CAM expression in hRVECs through activation of the NF-κB pathway. DHA22:6n3 inhibited cytokine induced CAM expression through suppression of NF-κB nuclear translocation and upstream I-κBα phosphorylation and degradation. DHA22:6n3 could be an important anti-inflammatory agent in the face of increased cytokine production and CAM expression in the diabetic retina.
doi:10.1167/iovs.05-0601
PMCID: PMC1378111  PMID: 16249517
11.  Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Modification of Caveolae/Lipid Rafts by Docosahexaenoic Acid 
PURPOSE.
Docosahexaenoic acid (DHA22:6,n3) is the principal n3 polyunsaturated fatty acid (PUFA) in the retina. The authors previously demonstrated that DHA22:6,n3 inhibited cytokine-induced adhesion molecule expression in primary human retinal vascular endothelial (hRVE) cells, the target tissue affected by diabetic retinopathy. Despite the importance of vascular inflammation in diabetic retinopathy, the mechanisms underlying anti-inflammatory effects of DHA22:6,n3 in vascular endothelial cells are not understood. In this study the authors address the hypothesis that DHA22:6,n3 acts through modifying lipid composition of caveolae/lipid rafts, thereby changing the outcome of important signaling events in these specialized plasma membrane microdomains.
METHODS.
hRVE cells were cultured in the presence or absence of DHA22:6,n3. Isolated caveolae/lipid raft–enriched detergent-resistant membrane domains were prepared using sucrose gradient ultracentrifugation. Fatty acid composition and cholesterol content of caveolae/lipid rafts before and after treatment were measured by HPLC. The expression of Src family kinases was assayed by Western blotting and immunohistochemistry.
RESULTS.
Disruption of the caveolae/lipid raft structure with a cholesterol-depleting agent, methyl-cyclodextrin (MCD), diminished cytokine-induced signaling in hRVE cells. Growth of hRVE cells in media enriched in DHA22:6,n3 resulted in significant incorporation of DHA22:6,n3 into the major phospholipids of caveolae/lipid rafts, causing an increase in the unsaturation index in the membrane microdomain. DHA22:6,n3 enrichment in the caveolae/raft was accompanied by a 70% depletion of cholesterol from caveolae/lipid rafts and displacement of the SFK, Fyn, and c-Yes from caveolae/lipid rafts. Adding water-soluble cholesterol to DHA22:6,n3-treated cells replenished cholesterol in caveolae/lipid rafts and reversed the effect of DHA22:6,n3 on cytokine-induced signaling.
CONCLUSIONS.
Incorporation of DHA22:6,n3 into fatty acyl chains of phospholipids in caveolae/lipid rafts, followed by cholesterol depletion and displacement of important signaling molecules, provides a potential mechanism for anti-inflammatory effect of DHA22:6,n3 in hRVE cells.
doi:10.1167/iovs.06-0619
PMCID: PMC1975816  PMID: 17197511
12.  Effect of Reduced Retinal VLC-PUFA on Rod and Cone Photoreceptors 
Purpose.
Autosomal dominant Stargardt-like macular dystrophy (STGD3) is a juvenile-onset disease that is caused by mutations in Elovl4 (elongation of very long fatty acids-4). The Elovl4 catalyzes the first step in the conversion of C24 and longer fatty acids (FAs) to very long-chain FAs (VLC-FAs, ≥C26). Photoreceptors are particularly rich in VLC polyunsaturated FAs (VLC-PUFA). To explore the role of VLC-PUFAs in photoreceptors, we conditionally deleted Elovl4 in the mouse retina.
Methods.
Proteins were analyzed by Western blotting and lipids by gas chromatography (GC)–mass spectrometry, GC-flame ionization detection, and tandem mass spectrometry. Retina function was assessed by electroretinography (ERG), and structure was evaluated by bright field, immunofluorescence, and transmission electron microscopy.
Results.
Conditional deletion (KO) of retinal Elovl4 reduced RNA and protein levels by 91% and 96%, respectively. Total retina VLC-PUFAs were reduced by 88% compared to the wild type (WT) levels. Retinal VLC-PUFAs incorporated in phosphatidylcholine were less abundant at 12 months compared to 8-week-old levels. Amplitudes of the ERG a-wave were reduced by 22%, consistent with photoreceptor degeneration (11% loss of photoreceptors). Analysis of the rod a-wave responses gave no evidence of a role for VLC-PUFA in visual transduction. However, there were significant reductions in rod b-wave amplitudes (>30%) that could not be explained by loss of rod photoreceptors. There was no effect of VLC-PUFA reduction on cone ERG responses, and cone density was not different between the WT and KO mice at 12 months of age.
Conclusions.
The VLC-PUFAs are important for rod, but not cone, function and for rod photoreceptor longevity.
Comprehensive ERG and histologic analysis revealed that VLC-PUFAs are vital for rod function and longevity.
doi:10.1167/iovs.14-13995
PMCID: PMC4027810  PMID: 24722693
VLC-PUFA; Elovl4; STDG3
13.  Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina 
A “shotgun” tandem mass spectrometry (MS) approach involving the use of multiple lipid-class-specific precursor ion and neutral loss scan mode experiments has been employed to identify and characterize the glycerophosphatidylethanolamine (GPEtn) lipids that were present within a crude lipid extract of a normal rat retina, obtained with minimal sample handling prior to analysis. Characterization of these lipids was performed by complementary analysis of their protonated and deprotonated precursor ions, as well as their various ionic adducts (e.g., Na+, Cl−), using a triple-quadrupole mass spectrometer. Notably, the application of novel precursor ion and neutral loss scans of m/z 164 and m/z 43, respectively, for the specific identification of sodiated GPEtn precursor ions following the addition of 500 μM NaCl to the crude lipid extracts was demonstrated. The use of these novel MS/MS scans in parallel provided simplified MS/MS spectra and enhanced the detection of 1-alkenyl, 2-acyl (plasmenyl) GPEtn lipids relative to the positive ion mode neutral loss m/z 141 commonly used for GPEtn analysis. Furthermore, the novel use of a “low energy” neutral loss scan mode experiment to monitor for the exclusive loss of 36m/z (HCl) from [M+Cl]-GPEtn adducts was demonstrated to provide a more than 25-fold enhancement for the detection of GPEtn lipids in negative ion mode analysis. Subsequent “high-energy” pseudo MS3 product ion scans on the precursor ions identified from this experiment were then employed to rapidly characterize the fatty acyl chain substituents of the GPEtn lipids.
doi:10.1007/s00216-009-2717-9
PMCID: PMC4112091  PMID: 19277613
Retina; Lipidomics; Glycerophosphatidylethanolamine; Electrospray ionization; Tandem mass spectrometry
14.  Changes in the Daily Rhythm of Lipid Metabolism in the Diabetic Retina 
PLoS ONE  2014;9(4):e95028.
Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy.
doi:10.1371/journal.pone.0095028
PMCID: PMC3988159  PMID: 24736612
15.  Per2 Mutation Recapitulates the Vascular Phenotype of Diabetes in the Retina and Bone Marrow 
Diabetes  2012;62(1):273-282.
In this study, we assessed whether Per2 clock gene–mutant mice exhibit a vascular phenotype similar to diabetes. Per2 (B6.129-Per2tm1Drw/J) or wild-type control mice 4 and 12 months of age were used. To evaluate diabetes-like phenotype in Per2 mutant mice, retina was quantified for mRNA expression, and degree of diabetic retinopathy was evaluated. Bone marrow neuropathy was studied by staining femurs for tyrosine hydroxylase (TH) and neurofilament 200 (NF-200). The rate of proliferation and quantification of bone marrow progenitor cells (BMPCs) was performed, and a threefold decrease in proliferation and 50% reduction in nitric oxide levels were observed in Per2 mutant mice. TH-positive nerve processes and NF-200 staining were reduced in Per2 mutant mice. Both retinal protein and mRNA expression of endothelial nitric oxide synthase were decreased by twofold. Other endothelial function genes (VEGFR2, VEGFR1) were downregulated (1.5–2-fold) in Per2 mutant retinas, whereas there was an upregulation of profibrotic pathway mediated by transforming growth factor-β1. Our studies suggest that Per2 mutant mice recapitulate key aspects of diabetes without the metabolic abnormalities, including retinal vascular damage, neuronal loss in the bone marrow, and diminished BMPC function.
doi:10.2337/db12-0172
PMCID: PMC3526035  PMID: 23193187
16.  Dicer Expression Exhibits a Tissue-Specific Diurnal Pattern That Is Lost during Aging and in Diabetes 
PLoS ONE  2013;8(11):e80029.
Dysregulation of circadian rhythmicity is identified as a key factor in disease pathogenesis. Circadian rhythmicity is controlled at both a transcriptional and post-transcriptional level suggesting the role of microRNA (miRNA) and double-stranded RNA (dsRNA) in this process. Endonuclease Dicer controls miRNA and dsRNA processing, however the role of Dicer in circadian regulation is not known. Here we demonstrate robust diurnal oscillations of Dicer expression in central and peripheral clock control systems including suprachiasmatic nucleolus (SCN), retina, liver, and bone marrow (BM). The Dicer oscillations were either reduced or phase shifted with aging and Type 2 diabetes. The decrease and phase shift of Dicer expression was associated with a similar decrease and phase shift of miRNAs 146a and 125a-5p and with an increase in toxic Alu RNA. Restoring Dicer levels and the diurnal patterns of Dicer-controlled miRNA and RNA expression may provide new therapeutic strategies for metabolic disease and aging-associated complications.
doi:10.1371/journal.pone.0080029
PMCID: PMC3820540  PMID: 24244599
17.  Examining the role of lipid mediators in diabetic retinopathy 
Clinical lipidology  2012;7(6):661-675.
Diabetic retinopathy is the most disabling complication of diabetes, affecting 65% of patients after 10 years of the disease. Current treatment options for diabetic retinopathy are highly invasive and fall short of complete amelioration of the disease. Understanding the pathogenesis of diabetic retinopathy is critical to the development of more effective treatment options. Diabetic hyperglycemia and dyslipidemia are the main metabolic insults that affect retinal degeneration in diabetes. Although the role of hyperglycemia in inducing diabetic retinopathy has been studied in detail, much less attention has been paid to dyslipidemia. Recent clinical studies have demonstrated a strong association between dyslipidemia and development of diabetic retinopathy, highlighting the importance of understanding the exact changes in retinal lipid metabolism in diabetes. This review describes what is known on the role of dyslipidemia in the development of diabetic retinopathy, with a focus on retinal-specific lipid metabolism and its dysregulation in diabetes.
doi:10.2217/clp.12.68
PMCID: PMC3640872  PMID: 23646066
acid sphingomyelinase; cholesterol; diabetes; fatty acid; fatty acid elongase; phospholipid; retinopathy; sphingolipid
18.  N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function 
PLoS ONE  2013;8(1):e55177.
Objective
The vasodegenerative phase of diabetic retinopathy is characterized by not only retinal vascular degeneration but also inadequate vascular repair due to compromised bone marrow derived endothelial progenitor cells (EPCs). We propose that n-3 polyunsaturated fatty acid (PUFA) deficiency in diabetes results in activation of the central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM) and that ASM represents a molecular metabolic link connecting the initial damage in the retina and the dysfunction of EPCs.
Research Design and Methods
Type 2 diabetic rats on control or docosahexaenoic acid (DHA)-rich diet were studied. The number of acellular capillaries in the retinas was assessed by trypsin digest. mRNA levels of interleukin (IL)-1β, IL-6, intracellular adhesion molecule (ICAM)-1 in the retinas from diabetic animals were compared to controls and ASM protein was assessed by western analysis. EPCs were isolated from blood and bone marrow and their numbers and ability to form colonies in vitro, ASM activity and lipid profiles were determined.
Results
DHA-rich diet prevented diabetes-induced increase in the number of retinal acellular capillaries and significantly enhanced the life span of type 2 diabetic animals. DHA-rich diet blocked upregulation of ASM and other inflammatory markers in diabetic retina and prevented the increase in ASM activity in EPCs, normalized the numbers of circulating EPCs and improved EPC colony formation.
Conclusions
In a type 2 diabetes animal model, DHA-rich diet fully prevented retinal vascular pathology through inhibition of ASM in both retina and EPCs, leading to a concomitant suppression of retinal inflammation and correction of EPC number and function.
doi:10.1371/journal.pone.0055177
PMCID: PMC3558503  PMID: 23383097
19.  Free Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) Reduces Retinal Vascular Permeability in Association with a Reduction of Acid Sphingomyelinase (ASMase) 
Intravitreal administration of IGFBP-3NB preserves junctional integrity in the presence of VEGF or laser injury by reducing BRB permeability in part by modulating sphingomyelinase levels.
Purpose.
To examine the effect of free insulin-like growth factor (IGF) binding protein-3 (IGFBP-3), independent of the effect of insulin-like growth factors, in modulating retinal vascular permeability.
Methods.
We assessed the ability of a form of IGFBP-3 that does not bind IGF-1 (IGFBP-3NB), to regulate the blood retinal barrier (BRB) using two distinct experimental mouse models, laser-induced retinal vessel injury and vascular endothelial growth factor (VEGF)-induced retinal vascular permeability. Additionally, in vitro studies were conducted. In the animal models, BRB permeability was quantified by intravenous injection of fluorescein labeled serum albumin followed by digital confocal image analysis of retinal flat-mounts. Claudin-5 and vascular endothelial-cadherin (VE-cadherin) localization at interendothelial junctions was studied by immunofluorescence. In vitro changes in transendothelial electrical resistance (TEER) and flux of fluorescent dextran in bovine retinal endothelial monolayers (BREC) were measured after IGFBP-3NB treatment. Acid (ASMase) and neutral (NSMase) sphingomyelinase mRNA levels and activity were measured in mouse retinas.
Results.
Four days postinjury, laser-injured mouse retinas injected with IGFBP-3NB plasmid demonstrated reduced vascular permeability compared with retinas of laser-injured mouse retinas injected with control plasmid. IGFBP-3NB administration resulted in a significant decrease in laser injury-associated increases in ASMase and NSMase mRNA and activity when compared with laser alone treated mice. In vivo, intravitreal injection of IGFBP-3NB reduced vascular leakage associated with intravitreal VEGF injection. IGFBP-3NB partially restored VEGF-induced in vivo permeability and dissociation of claudin-5 and VE-cadherin at junctional complexes. When IGFBP-3NB was applied basally to bovine retinal endothelial cells (BREC) in vitro, TEER increased and macromolecular flux decreased.
Conclusions.
Intravitreal administration of IGFBP-3NB preserves junctional integrity in the presence of VEGF or laser injury by reducing BRB permeability in part by modulating sphingomyelinase levels.
doi:10.1167/iovs.11-8167
PMCID: PMC3208060  PMID: 21931131
20.  Evaluation of Sex-Specific Gene Expression in Archived Dried Blood Spots (DBS) 
Screening newborns for treatable serious conditions is mandated in all US states and many other countries. After screening, Guthrie cards with residual blood (whole spots or portions of spots) are typically stored at ambient temperature in many facilities. The potential of archived dried blood spots (DBS) for at-birth molecular studies in epidemiological and clinical research is substantial. However, it is also challenging as analytes from DBS may be degraded due to preparation and storage conditions. We previously reported an improved assay for obtaining global RNA gene expression from blood spots. Here, we evaluated sex-specific gene expression and its preservation in DBS using oligonucleotide microarray technology. We found X inactivation-specific transcript (XIST), lysine-specific demethylase 5D (KDM5D) (also known as selected cDNA on Y, homolog of mouse (SMCY)), uncharacterized LOC729444 (LOC729444), and testis-specific transcript, Y-linked 21 (TTTY21) to be differentially-expressed by sex of the newborn. Our finding that trait-specific RNA gene expression is preserved in unfrozen DBS, demonstrates the technical feasibility of performing molecular genetic profiling using such samples. With millions of DBS potentially available for research, we see new opportunities in using newborn molecular gene expression to better understand molecular pathogenesis of perinatal diseases.
doi:10.3390/ijms13089599
PMCID: PMC3431816  PMID: 22949818
archived dried blood spots (DBS); sex-specific; gene expression; molecular genetic profiling; microarray
21.  Analysis of Retina and Erythrocyte Glycerophospholipid Alterations in a Rat Model of Type 1 Diabetes 
JALA (Charlottesville, Va.)  2009;14(6):383-399.
An automated tandem mass spectrometry based analysis employing precursor ion and neutral loss scans in a triple quadrupole mass spectrometer has been employed to identify and quantify changes in the abundances of glycerophospholipids extracted from retina and erythrocytes in a rat streptozotocin model of type 1 diabetes, 6 weeks and 36 weeks following induction of diabetes, compared to age matched nondiabetic controls. The utility of an ‘internal standard’ method compared to an ‘internal standard free’ method for quantification of differences in the abundances of specific lipid ions was evaluated in both retina and erythrocyte lipid extracts. In retina, equivalent results were obtained by using the internal standard and ‘internal standard free’ methods for quantification. In erythrocytes, the two methods of analysis yielded significantly different results, suggesting that factors intrinsic to particular sample types may influence the outcome of label-free lipidome quantification approaches.
Overall increases (~25% to ~35%) in the abundances of major retina glycerophospholipid classes were demonstrated in rats at 6 weeks of diabetes, relative to control animals. However, at 36 weeks of diabetes, subsequent overall decreases in retina glycerophosphocholine and glycerophosphoethanolamine abundances of 16% and 33%, respectively, were observed. Additionally, retina and erythrocyte glycerophosphocholine lipids at both 6 week and 36 weeks of diabetes exhibited increased incorporation of linoleic acid(18:2n6) and a decrease in docosahexaenoic acid (DHA(22:6n3)) content. Finally, an approximately 5-fold increase in the abundances of specific glycated glycerophosphoethanolamine (Amadori-GPEtn) lipids were observed in the retina of 36 week diabetic rats, with a corresponding 1.6 fold increase of Amadori-GPEtn lipids in diabetic erythrocytes.
doi:10.1016/j.jala.2009.07.003
PMCID: PMC2786180  PMID: 20161420
Retina; diabetic retinopathy; lipidomics; electrospray ionization; tandem mass spectrometry
22.  Global Analysis of Retina Lipids by Complementary Precursor Ion and Neutral Loss Mode Tandem Mass Spectrometry 
Summary
Despite an increasing recognition of the causative and diagnostic role of lipids in the onset and progression of retinal disease, information on the global lipid profile of the normal retina is quite limited. Here, a “shotgun” tandem mass spectrometry approach involving the use of multiple lipid class-specific precursor ion and neutral loss scan mode experiments has been employed to analyze lipid extracts from normal rat retina, obtained with minimal sample handling prior to analysis. Redundant information for the identification and characterization of molecular species in each lipid class was obtained by complementary analysis of their protonated or deprotonated precursor ions, or by analysis of their various ionic adducts (e.g., Na+, NH4+, Cl−, CH3OCO2−). Notably, “alternative” precursor ion or neutral loss scan mode MS/MS experiments are introduced that were used to identify rat retina lipid molecular species that were not detected using “conventional” scan types typically employed in large-scale lipid-profiling experiments. This chapter outlines the principles and advantages of utilizing complementary/redundant identification of lipid species as a strategy to overcome inherent challenges and limitations of shotgun lipid analysis, and provides examples of the application of this strategy in the analysis of the retina lipidome.
doi:10.1007/978-1-60761-322-0_3
PMCID: PMC2879063  PMID: 19763470
Retina; Lipidomics; Lipid analysis; Electrospray ionization; Tandem mass spectrometry
23.  Novel mechanism for obesity-induced colon cancer progression 
Carcinogenesis  2009;30(4):690-697.
Adipose tissue secretes factors linked to colon cancer risk including leptin. A hallmark of cancer is sustained angiogenesis. While leptin promotes angiogenesis in adipose tissue, it is unknown whether leptin can induce epithelial cells to produce factors that may drive angiogenesis, vascular development and therefore cancer progression. The purpose of this study was to compare the effects of leptin-stimulated colon epithelial cells differing in adenomatous polyposis coli (Apc) genotype (gatekeeper tumor suppressor gene for colon cancer) on angiogenesis. We employed novel colonic epithelial cell lines derived from the Immorto mouse [young adult mouse colon (YAMC)] and the Immorto-Min mouse [Immorto-Min colonic epithelial cell (IMCE)], which carries the Apc Min mutation, to study the effects of leptin-stimulated colon epithelial cells on angiogenesis. We utilized ex vivo rat mesenteric capillary bioassay and human umbilical vein endothelial cell (HUVEC) models to study angiogenesis. IMCE cells stimulated with leptin produced significantly more vascular endothelial growth factor (VEGF) than YAMC (268 ± 18 versus 124 ± 8 pg/ml; P < 0.01) cells. Leptin treatment induced dose-dependent increases in VEGF only in IMCE cells. Conditioned media from leptin (50 ng/ml)-treated IMCE cells induced significant capillary formation compared with control, which was blocked by the addition of a neutralizing antibody against VEGF. Conditioned media from leptin-treated IMCE cells also induced HUVEC cell proliferation, chemotaxis, upregulation of adhesion proteins and cell-signaling activation resulting in nuclear factor kappa B nuclear translocation and DNA binding due to VEGF. This is the first study demonstrating that leptin can induce preneoplastic colon epithelial cells to orchestrate VEGF-driven angiogenesis and vascular development, thus providing a specific mechanism and potential target for obesity-associated cancer.
doi:10.1093/carcin/bgp041
PMCID: PMC2664456  PMID: 19221001
24.  Archived Unfrozen Neonatal Blood Spots Are Amenable to Quantitative Gene Expression Analysis 
Neonatology  2008;95(3):210-216.
Background
State laws in the USA mandate that blood be drawn from all newborn infants to screen for health-threatening conditions. These screening assays consume only a small portion of the blood samples, which are collected on filter paper (‘Guthrie’) cards. Many states archive unused blood spots, often in unrefrigerated storage. Objectives: While individual RNA transcripts have been identified from archived neonatal blood spots, no study to date has performed quantitative analysis of archived blood spot RNA.
Methods
We demonstrate that RNA can be isolated and amplified from newborn blood spots stored unfrozen for as long as 9 years, and can be analyzed by microarray and qPCR.
Results
Microarray assays of archived neonatal blood spots consistently detected 3,000–4,000 expressed genes with correlations of 0.90 between replicates. Blood spot mRNA is amenable to qPCR and we detected biologically relevant expression levels of housekeeping and immune-mediating genes.
Conclusions
These experiments demonstrate the feasibility of using blood spots as a source of RNA which can be analyzed using quantitative microarray and qPCR assays. The application of these methods to the analysis of widely collected biological specimens may be a valuable resource for the study of perinatal determinants of disease development.
doi:10.1159/000155652
PMCID: PMC2693916  PMID: 18799893
Guthrie; Blood spot; RNA; Microarray; qPCR; Real-time PCR; Neonatal screening
25.  Carbon Monoxide and Nitric Oxide Mediate Cytoskeletal Reorganization in Microvascular Cells via Vasodilator-Stimulated Phosphoprotein Phosphorylation 
Diabetes  2008;57(9):2488-2494.
OBJECTIVE— We examined the effect of the vasoactive agents carbon monoxide (CO) and nitric oxide (NO) on the phosphorylation and intracellular redistribution of vasodilator-stimulated phosphoprotein (VASP), a critical actin motor protein required for cell migration that also controls vasodilation and platelet aggregation.
RESEARCH DESIGN AND METHODS— We examined the effect of donor-released CO and NO in endothelial progenitor cells (EPCs) and platelets from nondiabetic and diabetic subjects and in human microvascular endothelial cells (HMECs) cultured under low (5.5 mmol/l) or high (25 mmol/l) glucose conditions. VASP phosphorylation was evaluated using phosphorylation site-specific antibodies.
RESULTS— In control platelets, CO selectively promotes phosphorylation at VASP Ser-157, whereas NO promotes phosphorylation primarily at Ser-157 and also at Ser-239, with maximal responses at 1 min with both agents on Ser-157 and at 15 min on Ser-239 with NO treatment. In diabetic platelets, neither agent resulted in VASP phosphorylation. In nondiabetic EPCs, NO and CO increased phosphorylation at Ser-239 and Ser-157, respectively, but this response was markedly reduced in diabetic EPCs. In endothelial cells cultured under low glucose conditions, both CO and NO induced phosphorylation at Ser-157 and Ser-239; however, this response was completely lost when cells were cultured under high glucose conditions. In control EPCs and in HMECs exposed to low glucose, VASP was redistributed to filopodia-like structures following CO or NO exposure; however, redistribution was dramatically attenuated under high glucose conditions.
CONCLUSIONS— Vasoactive gases CO and NO promote cytoskeletal changes through site- and cell type–specific VASP phosphorylation, and in diabetes, blunted responses to these agents may lead to reduced vascular repair and tissue perfusion.
doi:10.2337/db08-0381
PMCID: PMC2518501  PMID: 18559661

Results 1-25 (27)