PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Optimal Iron Fortification of Maternal Diet during Pregnancy and Nursing For Investigating and Preventing Iron Deficiency in Young Rhesus Monkeys1 
Research in veterinary science  2013;94(3):549-554.
The realization that pregnant and infant monkeys were challenged by high nutritional needs for iron led vendors to markedly increase iron concentrations in commercial diets. Yet, no systematic research was conducted to investigate the consequences of this important dietary change. Hematology and iron panels were determined for 142 infant rhesus monkeys gestated and reared on 3 different diets varying in iron concentration (180, 225 or 380 mg Fe/kg). Anemia was significantly more prevalent in offspring from females fed the 180 and 225 mg Fe/kg diets (32–41% versus 0 for the 380 mg Fe/kg diet, P<0.001). Higher hepcidin levels were protective against iron overload in infants from the 380 mg Fe/kg condition. These findings indicate a highly fortified diet during pregnancy continues to have postnatal benefits for the growing infant. However, for those interested in iron deficiency, lower iron diets provide a reliable way to generate anemic infant monkeys for research.
doi:10.1016/j.rvsc.2012.11.017
PMCID: PMC3622768  PMID: 23312499
iron deficiency; anemia; pregnancy; infancy; primate; monkey; hepcidin
2.  Hemorrhage-Adjusted Iron Requirements, Hematinics and Hepcidin Define Hereditary Hemorrhagic Telangiectasia as a Model of Hemorrhagic Iron Deficiency 
PLoS ONE  2013;8(10):e76516.
Background
Iron deficiency anemia remains a major global health problem. Higher iron demands provide the potential for a targeted preventative approach before anemia develops. The primary study objective was to develop and validate a metric that stratifies recommended dietary iron intake to compensate for patient-specific non-menstrual hemorrhagic losses. The secondary objective was to examine whether iron deficiency can be attributed to under-replacement of epistaxis (nosebleed) hemorrhagic iron losses in hereditary hemorrhagic telangiectasia (HHT).
Methodology/Principal Findings
The hemorrhage adjusted iron requirement (HAIR) sums the recommended dietary allowance, and iron required to replace additional quantified hemorrhagic losses, based on the pre-menopausal increment to compensate for menstrual losses (formula provided). In a study population of 50 HHT patients completing concurrent dietary and nosebleed questionnaires, 43/50 (86%) met their recommended dietary allowance, but only 10/50 (20%) met their HAIR. Higher HAIR was a powerful predictor of lower hemoglobin (p = 0.009), lower mean corpuscular hemoglobin content (p<0.001), lower log-transformed serum iron (p = 0.009), and higher log-transformed red cell distribution width (p<0.001). There was no evidence of generalised abnormalities in iron handling Ferritin and ferritin2 explained 60% of the hepcidin variance (p<0.001), and the mean hepcidinferritin ratio was similar to reported controls. Iron supplement use increased the proportion of individuals meeting their HAIR, and blunted associations between HAIR and hematinic indices. Once adjusted for supplement use however, reciprocal relationships between HAIR and hemoglobin/serum iron persisted. Of 568 individuals using iron tablets, most reported problems completing the course. For patients with hereditary hemorrhagic telangiectasia, persistent anemia was reported three-times more frequently if iron tablets caused diarrhea or needed to be stopped.
Conclusions/significance
HAIR values, providing an indication of individuals’ iron requirements, may be a useful tool in prevention, assessment and management of iron deficiency. Iron deficiency in HHT can be explained by under-replacement of nosebleed hemorrhagic iron losses.
doi:10.1371/journal.pone.0076516
PMCID: PMC3797784  PMID: 24146883
3.  Hepcidin levels in hereditary hyperferritinemia: Insights into the iron-sensing mechanism in hepatocytes 
AIM: To study the role of hepcidin in hereditary hyperferritinemia cataract syndrome (HHCS).
METHODS: Six patients from two families with HHCS, confirmed by genetic analysis showing A to G mutation at position +40 in the L-ferritin gene, were recruited to undergo serum hepcidin and prohepcidin measurements using radioimmunoassay and enzyme linked immunoassay, respectively, and measurements were compared with levels in serum from 25 healthy volunteers (14 females), mean age 36 ± 11.9 years.
RESULTS: The serum hepcidin and prohepcidin levels in patients with HHCS were 19.1 ± 18.6 and 187 ± 120.9 ng/mL, respectively. Serum ferritin was 1716.3 ± 376 μg/L. Liver biopsy in one patient did not show any evidence of iron overload. Serum hepcidin and prohepcidin values in healthy controls (HCs) were 15.30 ± 15.71 and 236.88 ± 83.68 ng/mL, respectively, while serum ferritin was 110 ± 128.08 μg/L. There was no statistical difference in serum hepcidin level between the two cohorts (19.1 ± 18.6 ng/mL vs 15.30 ± 15.71 ng/mL, P = 0.612) using two-tailed t-test.
CONCLUSION: Serum hepcidin levels in HHCS patients is similar to that in HCs. Our study suggests that circulating ferritin is not a factor influencing hepcidin synthesis and does not have a role in the iron-sensing mechanism in hepatocytes.
doi:10.3748/wjg.v16.i28.3541
PMCID: PMC2909553  PMID: 20653062
Hereditary hyperferritinemia; Hereditary hyperferritinemia cataract syndrome; Hepcidin; Hepcidin assay; Iron-sensing mechanism; Iron responsive element; Ferritin
4.  Presence of hepcidin-25 in biological fluids: Bile, ascitic and pleural fluids 
AIM: To examine body fluids such as ascitic fluid (AF), saliva, bile and pleural effusions for the presence of hepcidin using a novel radioimmunoassay (RIA).
METHODS: Serum samples were collected from 25 healthy volunteers (mean age: 36 ± 11.9 years, 11 males, 14 females). In addition bile was obtained from 12 patients undergoing endoscopic retrograde cholangiopancreatography (mean age: 66.9 ± 16.7 years, M:F = 5:7). Saliva was collected from 17 healthy volunteers (mean age: 35 ± 9.9 years, M:F = 8:9). Pleural and AF were collected from 11 and 16 patients [(mean age: 72 ± 20.5 years, M:F = 7:4) and (mean age: 67.32 ± 15.2 years, M:F = 12:4)], respectively. All biological fluid samples (serum, exudative and transudative fluids) were tested for the presence of hepcidin-25 molecule using RIA.
RESULTS: Hepcidin-25 was detected in all biological fluids tested. The mean ± SD hepcidin-25 in serum was 15.68 ± 15.7 ng/mL, bile 7.37 ± 7.4 ng/mL, saliva 3.4 ± 2.8 ng/mL, exudative fluid 65.64 ± 96.82 ng/mL and transudative fluid 14.1 ± 17.8 ng/mL.
CONCLUSION: We provide clear evidence that hepcidin-25 is present in bile, saliva, pleural and ascitic fluids. Hepcidin is likely to play a role here in innate immunity.
doi:10.3748/wjg.v16.i17.2129
PMCID: PMC2864838  PMID: 20440853
Hepcidin; Hepcidin assay; Hepcidin in biological fluids; Hepcidin in ascitic fluid; Bile; Exudates; Antimicrobial peptides
5.  Prohepcidin Levels in Refractory Anaemia Caused by Lead Poisoning 
Recent research evidence suggests a central role for hepcidin in iron homeostasis. Hepcidin is a hormone synthesized in the liver. Hepcidin is also thought to play a vital role in the pathogenic mechanism of anaemia in patients with inflammation or chronic disease. A 38-year-old female who presented with recurrent abdominal pain was found to have raised urinary porphyrins and a blood lead level of 779 μg/l. Her haemoglobin level was 8.3 g/dl. Her MCV was normal. Serum ferritin, B12 and folate were normal. Her serum prohepcidin level was 2,489 ng/ml (normal <450 ng/ml). To our knowledge, this is the first report of raised prohepcidin levels in a patient with anaemia of chronic disease resulting from lead poisoning.
doi:10.1159/000118035
PMCID: PMC3075166  PMID: 21490838
Hepcidin; Prohepcidin; Lead poisoning; Porphyrins; Abdominal pain; Sideroblastic anaemia

Results 1-5 (5)