PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A highly specific q-RT-PCR assay to address the relevance of the JAK2WT and JAK2V617F expression levels and control genes in Ph-negative myeloproliferative neoplasms 
Annals of Hematology  2013;93(4):609-616.
In Ph− myeloproliferative neoplasms, the quantification of the JAK2V617F transcripts may provide some advantages over the DNA allele burden determination. We developed a q-RT-PCR to assess the JAK2WT and JAK2V617F mRNA expression in 105 cases (23 donors, 13 secondary polycythemia, 22 polycythemia vera (PV), 38 essential thrombocythemia (ET), and 9 primary myelofibrosis (PMF)). Compared with the standard allele-specific oligonucleotide (ASO)-PCR technique, our assay showed a 100 % concordance rate detecting the JAK2V617F mutation in 22/22 PV (100 %), 29/38 (76.3 %) ET, and 5/9 (55.5 %) PMF cases, respectively. The sensitivity of the assay was 0.01 %. Comparing DNA and RNA samples, we found that the JAK2V617F mutational ratios were significantly higher at the RNA level both in PV (p = 0.005) and ET (p = 0.001) samples. In PV patients, JAK2WT expression levels positively correlated with the platelets (PLTs) (p = 0.003) whereas a trend to negative correlation was observed with the Hb levels (p = 0.051). JAK2V617F-positive cases showed the lowest JAK2WT and ABL1 mRNA expression levels. In all the samples, the expression pattern of beta-glucoronidase (GUSB) was more homogeneous than that of ABL1 or β2 microglobulin (B2M). Using GUSB as normalizator gene, a significant increase of the JAK2V617F mRNA levels was seen in two ET patients at time of progression to PV. In conclusion, the proposed q-RT-PCR is a sensitive and accurate method to quantify the JAK2 mutational status that can also show clinical correlations suggesting the impact of the residual amount of the JAK2WT allele on the Ph− MPN disease phenotype. Our observations also preclude the use of ABL1 as a housekeeping gene for these neoplasms.
Electronic supplementary material
The online version of this article (doi:10.1007/s00277-013-1920-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s00277-013-1920-0
PMCID: PMC3945640  PMID: 24173087
Ph− myeloproliferative neoplasms; JAK2WT level; JAK2V617F level; Housekeeping gene; q-RT-PCR
2.  MyoD regulates p57kip2 expression by interacting with a distant cis-element and modifying a higher order chromatin structure 
Nucleic Acids Research  2012;40(17):8266-8275.
The bHLH transcription factor MyoD, the prototypical master regulator of differentiation, directs a complex program of gene expression during skeletal myogenesis. The up-regulation of the cdk inhibitor p57kip2 plays a critical role in coordinating differentiation and growth arrest during muscle development, as well as in other tissues. p57kip2 displays a highly specific expression pattern and is subject to a complex epigenetic control driving the imprinting of the paternal allele. However, the regulatory mechanisms governing its expression during development are still poorly understood. We have identified an unexpected mechanism by which MyoD regulates p57kip2 transcription in differentiating muscle cells. We show that the induction of p57kip2 requires MyoD binding to a long-distance element located within the imprinting control region KvDMR1 and the consequent release of a chromatin loop involving p57kip2 promoter. We also show that differentiation-dependent regulation of p57kip2, while involving a region implicated in the imprinting process, is distinct and hierarchically subordinated to the imprinting control. These findings highlight a novel mechanism, involving the modification of higher order chromatin structures, by which MyoD regulates gene expression. Our results also suggest that chromatin folding mediated by KvDMR1 could account for the highly restricted expression of p57kip2 during development and, possibly, for its aberrant silencing in some pathologies.
doi:10.1093/nar/gks619
PMCID: PMC3458561  PMID: 22740650

Results 1-2 (2)