PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Porous titanium particles for acetabular reconstruction in total hip replacement show extensive bony armoring after 15 weeks 
Acta Orthopaedica  2014;85(6):600-608.
Background and purpose
— The bone impaction grafting technique restores bone defects in total hip replacement. Porous titanium particles (TiPs) are deformable, like bone particles, and offer better primary stability. We addressed the following questions in this animal study: are impacted TiPs osteoconductive under loaded conditions; do released micro-particles accelerate wear; and are systemic titanium blood levels elevated after implantation of TiPs?
Animals and methods —
An AAOS type-III defect was created in the right acetabulum of 10 goats weighing 63 (SD 6) kg, and reconstructed with calcium phosphate-coated TiPs and a cemented polyethylene cup. A stem with a cobalt chrome head was cemented in the femur. The goats were killed after 15 weeks. Blood samples were taken pre- and postoperatively.
Results —
The TiP-graft layer measured 5.6 (SD 0.8) mm with a mean bone ingrowth distance of 2.8 (SD 0.8) mm. Cement penetrated 0.9 (0.3–1.9) mm into the TiPs. 1 reconstruction showed minimal cement penetration (0.3 mm) and failed at the cement-TiP interface. There were no signs of accelerated wear, metallic particle debris, or osteolysis. Median systemic titanium concentrations increased on a log-linear scale from 0.5 (0.3–1.1) parts per billion (ppb) to 0.9 (0.5–2.8) ppb (p = 0.01).
Interpretation —
Adequate cement pressurization is advocated for impaction grafting with TiPs. After implantation, calcium phosphate-coated TiPs were osteoconductive under loaded conditions and caused an increase in systemic titanium concentrations. However, absolute levels remained low. There were no signs of accelerated wear. A clinical pilot study should be performed to prove that application in humans is safe in the long term.
doi:10.3109/17453674.2014.960660
PMCID: PMC4259031  PMID: 25238431
2.  Synthetic meniscus replacement: a review 
International Orthopaedics  2012;37(2):291-299.
The number of meniscus-related operations continues to rise due to the ageing and more active population. Irreparable meniscal lesions generally require (partial) meniscectomy. Although a majority of the patients benefit from pain relief and functional improvement post-meniscectomy, some remain symptomatic. As an alternative to a meniscal allograft, which is only indicated for the severely damaged meniscus, most patients can nowadays be treated by implantation of a synthetic meniscal substitute. Currently three of these implants, two partial and one total replacement, are clinically available and several others are in the stage of preclinical testing. Grossly, two types of meniscal substitutes can be distinguished: porous, resorbable implants that stimulate tissue regeneration and solid, non-resorbable implants that permanently replace the whole meniscus. Although the implantation of a porous meniscus replacement generally seems promising and improves clinical outcome measures to some degree, their superiority to partial meniscectomy still needs to be proven. The evaluation of new prostheses being developed requires a wider focus than has been adopted so far. Upon selection of the appropriate materials, preclinical evaluation of such implants should comprise a combination of (in vitro) biomechanical and (in vivo) biological tests, while up to now the focus has mainly been on biological aspects. Obviously, well-defined randomised controlled trials are necessary to support clinical performance of new implants. Since the use of a meniscus replacement requires an additional costly implant and surgery compared to meniscectomy only, the clinical outcome of new products should be proven to surpass the results of the conventional therapies available.
doi:10.1007/s00264-012-1682-7
PMCID: PMC3560902  PMID: 23100123
3.  Septic failure is not a septic loosening: A case report of a failed shoulder prosthesis 
Septic failure of a shoulder arthroplasty due to a low-grade infection is generally called septic loosening. However, it is often not investigated if a prosthesis is genuinely loose. We present a case of a failed resurfacing prosthesis in a 70-year-old woman. This prosthesis failed due to a low-grade infection and a revision procedure was mandatory. All intraoperative cultures were positive and revealed a combination of bacteria. Nevertheless, histology revealed a macroscopic and a microscopic stable prosthesis with full osseointegration beneath the prosthesis. The general conception is that an infection leads to interface formation (with neutrophils) and loosening of the prosthesis. We debate this with the presentation of this case of a failed shoulder prosthesis and we think that periprosthetic infection and septic prosthetic loosening are two different entities.
doi:10.4103/0973-6042.106225
PMCID: PMC3590703  PMID: 23493778
Infection; loosening; osseointegration; prosthesis; shoulder
4.  Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats 
Background
Bone grafts from bone banks might be mixed with bisphosphonates to inhibit the osteoclastic response. This inhibition prevents the osteoclasts to resorb the allograft bone before new bone has been formed by the osteoblasts, which might prevent instability. Since bisphosphonates may not only inhibit osteoclasts, but also osteoblasts and thus bone formation, we studied different bisphosphonate concentrations combined with allograft bone. We investigated whether locally applied alendronate has an optimum dose with respect to bone resorption and formation. Further, we questioned whether the addition of demineralized bone matrix (DBM), would stimulate bone formation. Finally, we studied the effect of high levels of antibiotics on bone allograft healing, since mixing allograft bone with antibiotics might reduce the infection risk.
Methods
25 goats received eight bone conduction chambers in the cortical bone of the proximal medial tibia. Five concentrations of alendronate (0, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 10 mg/mL) were tested in combination with allograft bone and supplemented with cefazolin (200 μg/mL). Allograft not supplemented with alendronate and cefazolin served as control. In addition, allograft mixed with demineralized bone matrix, with and without alendronate, was tested. After 12 weeks, graft bone area and new bone area were determined with manual point counting.
Results
Graft resorption decreased significantly (p < 0.001) with increasing alendronate concentration. The area of new bone in the 1 mg/mL alendronate group was significantly (p = 0.002) higher when compared to the 10 mg/mL group. No differences could be observed between the group without alendronate, but with demineralized bone, and the control groups.
Conclusions
A dose-response relationship for local application of alendronate has been shown in this study. Most new bone was present at 1 mg/mL alendronate. Local application of cefazolin had no effect on bone remodelling.
doi:10.1186/1471-2474-13-44
PMCID: PMC3338367  PMID: 22443362
6.  Evaluation of subsidence, chondrocyte survival and graft incorporation following autologous osteochondral transplantation 
Purpose
The aim of this study was to evaluate subsidence tendency, surface congruency, chondrocyte survival and plug incorporation after osteochondral transplantation in an animal model. The potential benefit of precise seating of the transplanted osteochondral plug on the recipient subchondral host bone (‘bottoming’) on these parameters was assessed in particular.
Methods
In 18 goats, two osteochondral autografts were harvested from the trochlea of the ipsilateral knee joint and inserted press-fit in a standardized articular cartilage defect in the medial femoral condyle. In half of the goats, the transplanted plugs were matched exactly to the depth of the recipient hole (bottomed plugs; n = 9), whereas in the other half of the goats, a gap of 2 mm was left between the plugs and the recipient bottom (unbottomed plugs; n = 9). After 6 weeks, all transplants were evaluated on gross morphology, subsidence, histology, and chondrocyte vitality.
Results
The macroscopic morphology scored significantly higher for surface congruency in bottomed plugs as compared to unbottomed reconstructions (P = 0.04). However, no differences in histological subsidence scoring between bottomed and unbottomed plugs were found. The transplanted articular cartilage of both bottomed and unbottomed plugs was vital. Only at the edges some matrix destaining, chondrocyte death and cluster formation was observed. At the subchondral bone level, active remodeling occurred, whereas integration at the cartilaginous surface of the osteochondral plugs failed to occur. Subchondral cysts were found in both groups.
Conclusions
In this animal model, subsidence tendency was significantly lower after ‘bottomed’ versus ‘unbottomed’ osteochondral transplants on gross appearance, whereas for histological scoring no significant differences were encountered. Since the clinical outcome may be negatively influenced by subsidence, the use of ‘bottomed’ grafts is recommended for osteochondral transplantation in patients.
doi:10.1007/s00167-011-1650-6
PMCID: PMC3199551  PMID: 21904953
Autologous osteochondral transplantation; Osteochondral defect; Cartilage repair; Cartilage defect; Histology
7.  The effect of impaction and a bioceramic coating on bone ingrowth in porous titanium particles 
Acta Orthopaedica  2011;82(3):372-377.
Background and purpose
Porous titanium (Ti) particles can be impacted like cancellous allograft bone particles, and may therefore be used as bone substitute in impaction grafting. We evaluated the effect of impaction and of a thin silicated biphasic calcium phosphate coating on osteoconduction by Ti particles.
Methods
The bone conduction chamber of Aspenberg was used in goats and filled with various groups of coated or uncoated small Ti particles (diameter 1.0–1.4 mm). Impacted allograft bone particles and empty chambers were used in control groups. Fluorochromes were administered at 4, 8, and 12 weeks. Maximum bone ingrowth distance was evaluated by histomorphometric analysis.
Results
Histology of Ti particle graft cylinders showed a dense matrix with narrow inter-particle and intra-particle pores (< 100 μm), occluding the lumen of the bone chamber. Bone ingrowth distances gradually increased with time in all groups. Maximum bone ingrowth distance was higher in originally empty chambers than those with allograft bone particles (p = 0.01) and Ti particles (p < 0.001). Maximum bone ingrowth in allograft bone particles was higher than in all Ti groups (p ≤ 0.001). Impaction reduced osteoconduction and the coating partially compensated for the negative effect of impaction, but these differences were not statistically significant. No osteolytic reactions were found.
Interpretation
Osteoconduction in the bone conduction chamber was reduced more by the insertion of small Ti particles than by insertion of small allograft bone particles. The osteoconductive potential of porous Ti particles should be studied further with larger-sized particles, which may allow bone ingrowth after impaction through larger inter-particle pores.
doi:10.3109/17453674.2011.579515
PMCID: PMC3235319  PMID: 21504310
8.  Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures 
The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth.
doi:10.1007/s10856-011-4256-0
PMCID: PMC3085057  PMID: 21327405
9.  Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology 
Background
Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants.
Methods
The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium plasma sprayed controls. Bone ingrowth (direct bone–implant contact) was determined by implanting the samples in the femoral condyles of 6 goats for a period of 6 weeks.
Results
Friction coefficients of the new structures were comparable to the titanium plasma sprayed control. The direct bone–implant contact was 23.9 and 24.5% for the new surface structures. Bone–implant contact of the sandblasted and titanium plasma sprayed control was 18.2 and 25.5%, respectively.
Conclusions
The frictional and bone ingrowth properties of the E-beam produced surface structures are similar to the plasma-sprayed control. However, since the maximal bone ingrowth had not been reached for the E-beam structures during the relatively short-term period, longer-term follow-up studies are needed to assess whether the E-beam structures lead to a better long-term performance than surfaces currently in use, such as titanium plasma spray coating.
doi:10.1007/s00402-010-1218-9
PMCID: PMC3078515  PMID: 21161665
Electron beam melting; Bone ingrowth; Friction; Surface characteristics; Prosthesis
10.  Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant 
Purpose
To evaluate the long-term effects of implantation of a biodegradable polymer meniscus implant on articular cartilage degeneration and compare this to articular cartilage degeneration after meniscectomy.
Methods
Porous polymer polycaprolacton-based polyurethane meniscus implants were implanted for 6 or 24 months in the lateral compartment of Beagle dog knees. Contralateral knees were meniscectomized, or left intact and served as controls. Articular cartilage degeneration was evaluated in detail using India ink staining, routine histology, immunochemistry for denatured (Col2-¾M) and cleaved (Col2-¾Cshort) type II collagen, Mankin’s grading system, and cartilage thickness measurements.
Results
Histologically, fibrillation and substantial immunohistochemical staining for both denatured and cleaved type II collagen were found in all three treatment groups. The cartilage of the three groups showed identical degradation patterns. In the 24 months implant group, degradation appeared to be more severe when compared to the 6 months implant group and meniscectomy group. Significantly more cartilage damage (India ink staining, Mankin’s grading system, and cartilage thickness measurements) was found in the 24 months implant group compared to the 6 months implant group and meniscectomy group.
Conclusion
Degradation of the cartilage matrix was the result of both mechanical overloading as well as localized cell-mediated degradation. The degeneration patterns were highly variable between animals. Clinical application of a porous polymer implant for total meniscus replacement is not supported by this study.
doi:10.1007/s00167-010-1244-8
PMCID: PMC3038217  PMID: 20802995
Porous polymer implant; Meniscectomy; Meniscus replacement; Cartilage degeneration; Cartilage thickness; India ink
11.  A modified cementing technique using BoneSource to augment fixation of the acetabulum in a sheep model 
Acta Orthopaedica  2010;81(4):503-507.
Background and purpose
Our aim was to assess in an animal model whether the use of HA paste at the cement-bone interface in the acetabulum improves fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylmethacrylate (PMMA).
Methods
We performed a randomized study involving 22 sheep that had BoneSource hydroxyapatite material applied to the surface of the acetabulum before cementing a polyethylene cup at arthroplasty. We studied the gross radiographic appearance of the implant-bone interface and the histological appearance at the interface.
Results
There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not give any detrimental effects. In some cases, the material appeared to have been fully resorbed. When the material was evident in histological sections, it was incorporated into an osseointegrated interface. There was no giant cell reaction present. There was no evidence of migration of BoneSource to the articulation.
Interpretation
The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in humans, to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.
doi:10.3109/17453674.2010.501740
PMCID: PMC2917575  PMID: 20586703
12.  Impregnation of bone chips with antibiotics and storage of antibiotics at different temperatures: an in vitro study 
Background
Allograft bone used in joint replacement surgery can additionally serve as a carrier for antibiotics and serve as a prophylaxis against infections. However, in vitro dose-response curves for bone chips impregnated with different kinds of antibiotics are not available. In addition, while it would be desirable to add the antibiotics to allograft bone chips before these are stored in a bone bank, the effects of different storage temperatures on antibiotics are unknown.
Methods
Five different antibiotics (cefazolin, clindamycin, linezolid, oxacillin, vancomycin) were stored, both as pills and as solutions, at -80°C, -20°C, 4°C, 20°C and 37°C; in addition, bone chips impregnated with cefazolin and vancomycin were stored at -80°C and -20°C. After 1 month, 6 months and 1 year, the activity of the antibiotics against Staphylococcus epidermidis was measured using an inoculated agar. The diameter of the S. epidermidis-free zone was taken as a measure of antibiotic activity.
In a separate experiment, in vitro dose-response curves were established for bone chips impregnated with cefazolin and vancomycin solutions at five different concentrations.
Finally, the maximum absorbed amounts of cefazolin and vancomycin were established by impregnating 1 g of bone chips with 5 ml of antibiotic solution.
Results
A decrease of the S. epidermidis-free zone was seen with oxacillin and cefazolin solutions stored at 37°C for 1 month, with vancomycin stored at 37°C for 6 months and with cefazolin and oxacillin solutions stored at 20°C for 6 months. The activity of the other antibiotic solutions, pills and impregnated bone chips was not affected by storage. The in vitro dose-response curves show that the free-zone diameter increases logarithmically with antibiotic concentration. The absorbed antibiotic amount of one gram bone chips was determined.
Conclusions
Storage of antibiotics in frozen form or storage of antibiotic pills at temperatures up to 37°C for 12 months does not affect their activity. However, storage of antibiotic solutions at temperatures above 20°C does affect the activity of some of the antibiotics investigated. The in vitro dose-response curve can be used to determine the optimal concentration(s) for local application. It provides the opportunity to determine the antibiotic content of bone chips, and thus the amount of antibiotics available locally after application.
doi:10.1186/1471-2474-11-96
PMCID: PMC2887391  PMID: 20500808
13.  Elevated levels of numerous cytokines in drainage fluid after primary total hip arthroplasty 
International Orthopaedics  2009;34(8):1099-1102.
As cytokines are involved in wound healing and other inflammatory processes, it could be valuable to measure their levels at the operative site. This study was conducted to investigate whether different cytokines are measurable in drainage fluid and, when measurable, whether we can find a difference in cytokine levels between one and six hours postoperatively. Samples from the drainage system in 30 consecutive patients undergoing primary total hip replacement were collected at one and six hours after closure of the wound. Levels of several cytokines were measured in the drainage fluids. A significant elevation of almost all cytokines was observed between the sample after one hour and six hours postoperatively. We found a strong correlation between the different pro-inflammatory cytokines. The IL-6 to IL-10 ratio were also raised, showing a pro-inflammatory predominance. Levels were much higher than those previously shown in serum.
doi:10.1007/s00264-009-0852-8
PMCID: PMC2989080  PMID: 19693496
14.  In Vitro Testing of Femoral Impaction Grafting With Porous Titanium Particles: A Pilot Study 
The disadvantages of allografts to restore femoral bone defects during revision hip surgery have led to the search for alternative materials. We investigated the feasibility of using porous titanium particles and posed the following questions: (1) Is it possible to create a high-quality femoral graft of porous titanium particles in terms of graft thickness, cement thickness, and cement penetration? (2) Does this titanium particle graft layer provide initial stability when a femoral cemented stem is implanted in it? (3) What sizes of particles are released from the porous titanium particles during impaction and subsequent cyclic loading of the reconstruction? We simulated cemented revision reconstructions with titanium particles in seven composite femurs loaded for 300,000 cycles and measured stem subsidence. Particle release from the titanium particle grafts was analyzed during impaction and loading. Impacted titanium particles formed a highly interlocked graft layer. We observed limited cement penetration into the titanium particle graft. A total mean subsidence of 1.04 mm was observed after 300,000 cycles. Most particles released during impaction were in the phagocytable range (< 10 μm). There was no detectable particle release during loading. Based on the data, we believe titanium particles are a promising alternative for allografts. However, animal testing is warranted to investigate the biologic effect of small-particle release.
doi:10.1007/s11999-008-0688-3
PMCID: PMC2674165  PMID: 19139968
15.  Is an Impacted Morselized Graft in a Cage an Alternative for Reconstructing Segmental Diaphyseal Defects? 
Large diaphyseal bone defects often are reconstructed with large structural allografts but these are prone to major complications. We therefore asked whether impacted morselized bone graft could be an alternative for a massive structural graft in reconstructing large diaphyseal bone defects. Defects in the femora of goats were reconstructed using a cage filled with firmly impacted morselized allograft or with a structural cortical autograft (n = 6 in both groups). All reconstructions were stabilized with an intramedullary nail. The goats were allowed full weightbearing. In all reconstructions, the grafts united radiographically. Mechanical torsion strength of the femur with the cage and structural cortical graft reconstructions were 66.6% and 60.3%, respectively, as compared with the contralateral femurs after 6 months. Histologically, the impacted morselized graft was replaced completely by new viable bone. In the structural graft group, a mixture of new and necrotic bone was present. Incorporation of the impacted graft into new viable bone suggests this type of reconstruction may be safer than reconstruction with a structural graft in which creeping substitution results in a mixture of viable and necrotic bone that can fracture. The data suggest that a cage filled with a loaded morselized graft could be an alternative for the massive cortical graft in reconstruction of large diaphyseal defects in an animal model.
doi:10.1007/s11999-008-0686-5
PMCID: PMC2635451  PMID: 19142693
16.  A cadaveric analysis of contact stress restoration after osteochondral transplantation of a cylindrical cartilage defect 
Osteochondral transplantation is a successful treatment for full-thickness cartilage defects, which without treatment would lead to early osteoarthritis. Restoration of surface congruency and stability of the reconstruction may be jeopardized by early mobilization. To investigate the biomechanical effectiveness of osteochondral transplantation, we performed a standardized osteochondral transplantation in eight intact human cadaver knees, using three cylindrical plugs on a full-thickness cartilage defect, bottomed on one condyle, unbottomed on the contralateral condyle. Surface pressure measurements with Tekscan pressure transducers were performed after five conditions. In the presence of a defect the border contact pressure of the articular cartilage defect significantly increased to 192% as compared to the initially intact joint surface. This was partially restored with osteochondral transplantation (mosaicplasty), as the rim stress subsequently decreased to 135% of the preoperative value. Following weight bearing motion two out of eight unbottomed mosaicplasties showed subsidence of the plugs according to Tekscan measurements. This study demonstrates that a three-plug mosaicplasty is effective in restoring the increased border contact pressure of a cartilage defect, which may postpone the development of early osteoarthritis. Unbottomed mosaicplasties may be more susceptible for subsidence below flush level after (unintended) weight bearing motion.
doi:10.1007/s00167-008-0494-1
PMCID: PMC2358931  PMID: 18292989
Biomechanics; Cartilage; Articular/pathology; Humans; Knee Joint/Surgery; Pressure; Surface Properties; Transplantation; Autologous; Weight-bearing
17.  Biological effects of rinsing morsellised bone grafts before and after impaction 
International Orthopaedics  2008;33(3):861-866.
Rinsing bone grafts before or both before and after impaction might have different effects on the incorporation of the graft. Rinsing again after impaction might negatively influence bone induction if growth factors released by impaction are washed away. We studied if transforming growth factor-βs (TGF-βs) and bone morphogenetic proteins (BMPs) are released from the mineralised matrix by impaction and if these released growth factors induce osteogenic differentiation in human mesenchymal stem cells (hMSCs). Rinsed morsellised bone allografts were impacted in a cylinder and the escaping fluid was collected. The fluid was analysed for the presence of TGF-βs and BMPs, and the osteoinductive capacity was tested on hMSCs. Abundant TGF-β was present in the fluid. No BMPs could be detected. Osteogenic differentiation of hMSCs was inhibited by the fluid. Results from our study leave us only able to speculate whether rinsing grafts again after impaction has a beneficial effect on the incorporation process or not.
doi:10.1007/s00264-007-0513-8
PMCID: PMC2903101  PMID: 18200445

Results 1-17 (17)