PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
author:("blaj, gregory")
1.  Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature 
Natural product reports  2013;30(1):108-160.
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
doi:10.1039/c2np20085f
PMCID: PMC3954855  PMID: 23165928
2.  Conantokin-Br from Conus brettinghami and Selectivity Determinants for the NR2D subunit of the NMDA receptor 
Biochemistry  2009;48(19):4063-4073.
Conantokins are venom peptides from marine cone snails that are NMDA receptor antagonists. Here, we report the characterization of a 24 AA conantokin from Conus brettinghami (1), conantokin-Br (con-Br), the first conantokin that does not have the conserved glutamate residue at position 2. Molecular modeling studies suggest that con-Br has a helical structure between residues 2–13. In contrast to other characterized conantokins, con-Br has a high potency for NMDA receptors with NR2D subunits. To identify determinants for NR2D potency, we synthesized chimeras of con-Br and conantokin-R (con-R), the latter has a ~30-fold lower potency for the NR2D subtype. The characterization of two reciprocal chimeras (con-Br/R and con-R/Br), comprising the first 9–10 N-terminal AAs of each conantokin followed by the corresponding C-terminal AAs of the other conantokin demonstrates that determinants for NR2D selectivity are at the N-terminal region. Additional analogs comprising 1–3 amino acid substitutions from each peptide into the homologous region of the other led to the identification of a key determinant; a Tyr residue in position 5 increases potency for NR2D, while Val at this locus causes a decrease. The systematic definition of key determinants in the conantokin peptides for NMDA receptor subtype selectivity is an essential component in the development of conantokin peptides that are highly selective for each specific NMDA receptor subtype.
doi:10.1021/bi802259a
PMCID: PMC3955384  PMID: 19309162
3.  On the Importance of Oxidative Folding in the Evolution of Conotoxins: Cysteine Codon Preservation through Gene Duplication and Adaptation 
PLoS ONE  2013;8(11):e78456.
Conotoxin genes are among the most rapidly evolving genes currently known; however, despite the well-established hypervariability of the intercysteine loops, the cysteines demonstrate significant conservation, with a site-specific codon bias for each cysteine in a family of conotoxins. Herein we present a novel rationale behind the codon-level conservation of the cysteines that comprise the disulfide scaffold. We analyze cysteine codon conservation using an internal reference and phylogenetic tools; our results suggest that the established codon conservation can be explained as the result of selective pressures linked to the production efficiency and folding of conotoxins, driving the conservation of cysteine at the amino-acid level. The preservation of cysteine has resulted in maintenance of the ancestral codon in most of the daughter lineages, despite the hypervariability of adjacent residues. We propose that the selective pressures acting on the venom components of cone snails involve an interplay of biosynthetic efficiency, activity at the target receptor and the importance of that activity to effective prey immobilization. Functional redundancy in the venom can thus serve as a buffer for the energy expenditure of venom production.
doi:10.1371/journal.pone.0078456
PMCID: PMC3823881  PMID: 24244311
4.  Reagentless Oxidative Folding of Disulfide-Rich Peptides is Catalyzed by an Intramolecular Diselenide** 
In cysteine-rich peptides, diselenides can be used as a proxy for disulfide bridges, since the energetic preference for diselenide bonding over mixed selenium-sulfur bonds simplifies folding. Herein we report that an intramolecular diselenide bond efficiently catalyzes the oxidative folding of selenopeptide analogs of conotoxins, and serves as a reagentless method to substantially accelerate formation of various native disulfide bridging patterns.
doi:10.1002/anie.201200062
PMCID: PMC3365648  PMID: 22454362
Diselenide; oxidative folding; kinetics; conotoxin; selenopeptide
5.  Dissecting a Role of Evolutionary-conserved but Non-critical Disulfide Bridges in Cysteine-Rich Peptides Using ω-Conotoxin GVIA and its Selenocysteine Analogs 
Biopolymers  2012;98(3):212-223.
Conotoxins comprise a large group of peptidic neurotoxins that employ diverse disulfide-rich scaffolds. Each scaffold is determined by an evolutionarily conserved pattern of cysteine residues. Although many structure-activity relationship studies confirm the functional and structural importance of disulfide crosslinks, there is growing evidence that not all disulfide bridges are critical in maintaining activities of conotoxins. To answer the fundamental biological question of what the role of non-critical disulfide bridges is, we investigated function and folding of disulfide-depleted analogs of ω-conotoxin GVIA (GVIA) that belongs to an inhibitory cystine knot (ICK) motif family and blocks N-type calcium channels. Removal of a non-critical Cys1–Cys16 disulfide bridge in GVIA or its selenopeptide analog had, as predicted, rather minimal effects on the inhibitory activity on calcium channels, as well as on in vivo activity following intracranial administration. However, the disulfide-depleted GVIA exhibited significantly lower folding yields for forming the remaining two native disulfide bridges. The disulfide-depleted selenoconotoxin GVIA analog also folded with significantly lower yields, suggesting that the functionally non-critical disulfide pair plays an important cooperative role in forming the native disulfide scaffold. Taken together, our results suggest that distinct disulfide bridges may be evolutionary preserved by the oxidative folding or/and stabilization of the bioactive conformation of a disulfide-rich scaffold.
doi:10.1002/bip.22047
PMCID: PMC3395435  PMID: 22782563
disulfide bridges; conotoxins; structure-function; oxidative folding; calcium channels
6.  Lactam-stabilized helical analogues of the analgesic μ-conotoxin KIIIA 
Journal of medicinal chemistry  2011;54(21):7558-7566.
μ-Conotoxin KIIIA (μ-KIIIA) blocks mammalian voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. Previous structure-activity studies of μ-KIIIA identified a helical pharmacophore for VGSC blockade. This suggested a route for designing truncated analogues of μ-KIIIA by incorporating the key residues into an α-helical scaffold. As (i, i+4) lactam bridges constitute a proven approach for stabilizing α-helices, we designed and synthesized six truncated analogues of μ-KIIIA containing single lactam bridges at various locations. The helicity of these lactam analogues was analysed by NMR spectroscopy, and their activities were tested against mammalian VGSC subtypes NaV1.1 through 1.7. Two of the analogues, Ac-cyclo9/13[Asp9,Lys13]KIIIA7–14 and Ac-cyclo9/13[Lys9,Asp13]KIIIA7–14, displayed µM activity against VGSC subtypes NaV1.2 and NaV1.6; importantly, the subtype selectivity profile for these peptides matched that of μ-KIIIA. Our study highlights structure-activity relationships within these helical mimetics and provides a basis for the design of additional truncated peptides as potential analgesics.
doi:10.1021/jm200839a
PMCID: PMC3228837  PMID: 21962108
7.  Selective Purification of Recombinant Neuroactive Peptides Using the Flagellar Type III Secretion System 
mBio  2012;3(3):e00115-12.
ABSTRACT
The structure, assembly, and function of the bacterial flagellum involves about 60 different proteins, many of which are selectively secreted via a specific type III secretion system (T3SS) (J. Frye et al., J. Bacteriol. 188:2233–2243, 2006). The T3SS is reported to secrete proteins at rates of up to 10,000 amino acid residues per second. In this work, we showed that the flagellar T3SS of Salmonella enterica serovar Typhimurium could be manipulated to export recombinant nonflagellar proteins through the flagellum and into the surrounding medium. We translationally fused various neuroactive peptides and proteins from snails, spiders, snakes, sea anemone, and bacteria to the flagellar secretion substrate FlgM. We found that all tested peptides of various sizes were secreted via the bacterial flagellar T3SS. We subsequently purified the recombinant μ-conotoxin SIIIA (rSIIIA) from Conus striatus by affinity chromatography and confirmed that T3SS-derived rSIIIA inhibited mammalian voltage-gated sodium channel NaV1.2 comparably to chemically synthesized SIIIA.
IMPORTANCE
Manipulation of the flagellar secretion system bypasses the problems of inclusion body formation and cellular degradation that occur during conventional recombinant protein expression. This work serves as a proof of principle for the use of engineered bacterial cells for rapid purification of recombinant neuroactive peptides and proteins by exploiting secretion via the well-characterized flagellar type III secretion system.
doi:10.1128/mBio.00115-12
PMCID: PMC3372961  PMID: 22647788
8.  Analgesic Neuropeptide W Suppresses Seizures in the Brain Revealed by Rational Repositioning and Peptide Engineering 
ACS Chemical Neuroscience  2010;2(1):51-56.
Anticonvulsant neuropeptides play an important role in controlling neuronal excitability that leads to pain or seizures. Based on overlapping inhibitory mechanisms, many anticonvulsant compounds have been found to exhibit both analgesic and antiepileptic activities. An analgesic neuropeptide W (NPW) targets recently deorphanized G-protein coupled receptors. Here, we tested the hypothesis that the analgesic activity of NPW may lead to the discovery of its antiepileptic properties. Indeed, direct administration of NPW into the brain potently reduced seizures in mice. To confirm this discovery, we rationally designed, synthesized, and characterized NPW analogues that exhibited anticonvulsant activities following systemic administration. Our results suggest that the combination of neuropeptide repositioning and engineering NPW analogues that penetrate the blood-brain barrier could provide new drug leads, not only for the treatment of epilepsy and pain but also for studying effects of this peptide on regulating feeding and energy metabolism coupled to leptin levels in the brain.
doi:10.1021/cn1000974
PMCID: PMC3400287  PMID: 22826747
Neuropeptide W; neuropeptide repositioning; lipidization-cationization; anticonvulsant; metabolic stability; systemic bioavailability
9.  Circular logic: Nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst 
Journal of the American Chemical Society  2010;132(44):15499-15501.
A protease from ribosomal peptide biosynthesis macrocyclizes diverse substrates, including those resembling nonribosomal peptide and hybrid polyketide-peptide products. The proposed mechanism is analogous to thioesterase-catalyzed chemistry, but the substrates are amide bonds rather than thioesters.
doi:10.1021/ja1067806
PMCID: PMC2975588  PMID: 20961047
10.  µ-Conotoxin KIIIA Derivatives with Divergent Affinities versus Efficacies in Blocking Voltage-gated Sodium Channels 
Biochemistry  2010;49(23):4804-4812.
The possibility of independently manipulating the affinity and efficacy of pore-blocking ligands of sodium channels is of interest for the development of new drugs for the treatment of pain. The analgesic µ-conotoxin KIIIA, a 16-residue peptide with three disulfide bridges, is a pore-blocker of voltage-gated sodium channels, including the neuronal subtype NaV1.2 (Kd of 5 nM). At saturating concentrations, µ-KIIIA incompletely blocks the sodium current of NaV1.2, leaving a 5% residual current (rINa). Lys7 is an important residue: the mutation K7A decreases both the efficacy (i.e., increases rINa to 23%) and the affinity of the peptide (Kd, 115 nM). In this report, various replacements of residue 7 were examined to determine whether affinity and efficacy were inexorably linked. Because of their facile chemical synthesis, KIIIA analogs were used that had as a core structure the disulfide-depleted KIIIA[C1A,C2U,C9A,C5U] (where U is selenocysteine) or ddKIIIA. The analogs ddKIIIA and ddKIIIA[K7X], where X represents one of nine different amino acids, were tested on voltage-clamped Xenopus oocytes expressing rat NaV1.2 or NaV1.4. Their affinities ranged from 0.01 to 36 µM and rINa's from 2 to 42%, and these two variables appeared uncorrelated. Instead, rINa varied inversely with side chain size, and remarkably charge and hydrophobicity appeared inconsequential. The ability to manipulate a µ-conopeptide's affinity and efficacy, as well as its capacity to interfere with subsequent tetrodotoxin-binding, greatly expands its scope as a reagent to probe sodium channel structure and function, and may also lead to the development of µ-conotoxins as safe analgesics.
doi:10.1021/bi100207k
PMCID: PMC2907105  PMID: 20459109
11.  Disulfide-Depleted Selenoconopeptides: a Minimalist Strategy to Oxidative Folding of Cysteine-Rich Peptides 
ACS medicinal chemistry letters  2010;1(4):140-144.
Despite the therapeutic promise of disulfide-rich, peptidic natural products, their discovery and structure/function studies have been hampered by inefficient oxidative folding methods for their synthesis. Here we report that converting the three disulfide-bridged μ-conopeptide KIIIA into a disulfide-depleted selenoconopeptide (by removal of a noncritical disulfide bridge and substitution of a disulfide- with a diselenide-bridge) dramatically simplified its oxidative folding while preserving the peptide’s ability to block voltage-gated sodium channels. The simplicity of synthesizing disulfide-depleted selenopeptide analogs containing a single disulfide bridge allowed rapid positional scanning at Lys7 of μ-KIIIA, resulting in the identification of K7L as a mutation that improved the peptide’s selectivity in blocking a neuronal (Nav1.2) over a muscle (Nav1.4) subtype of sodium channel. The disulfide-depleted selenopeptide strategy offers regioselective folding compatible with high throughput chemical synthesis and on-resin oxidation methods, and thus shows great promise to accelerate the use of disulfide-rich peptides as research tools and drugs.
PMCID: PMC2911238  PMID: 20676359
conotoxins; diselenide bridges; selenocysteines; oxidative folding; disulfide-rich peptides
12.  Site-Specific Effects of Diselenide Bridges on the Oxidative Folding of a Cystine Knot Peptide, ω-Selenoconotoxin GVIA* 
Biochemistry  2010;49(12):2741-2752.
Structural and functional studies of small, disulfide-rich peptides depend on their efficient chemical synthesis and folding. A large group of peptides derived from animals and plants contains the Cys pattern: C—C—CC—C—C that forms the inhibitory cystine knot (ICK) or knottin motif. Here we report the effect of site-specific incorporation of pairs of selenocysteine residues on oxidative folding and the functional activity of ω-conotoxin GVIA, a well-characterized ICK-motif peptidic antagonist of voltage-gated calcium channels. Three selenoconotoxin GVIA analogs were chemically synthesized; all three folded significantly faster in the glutathione-based buffer compared to wild-type GVIA. One analog, GVIA[C8U,C19U], exhibited significantly higher folding yields. A recently described NMR-based method was used for mapping the disulfide connectivities in the three selenoconotoxin analogs. The diselenide-directed oxidative folding of selenoconotoxins was predominantly driven by amino acid residue loop sizes formed by the resulting diselenide and disulfide crosslinks. Both in vivo and in vitro activities of the analogs were assessed; block of N-type calcium channels was comparable among the analogs and wild-type GVIA, suggesting that the diselenide replacement did not affect the bioactive conformation. Thus, diselenide substitution may facilitate oxidative folding of pharmacologically diverse ICK peptides. The diselenide replacement has been successfully applied to a growing number of bioactive peptides, including α-, µ- and ω- conotoxins, suggesting that the integrated oxidative folding of selenopeptides described here may prove to be a general approach for efficient synthesis of diverse classes of disulfide-rich peptides.
doi:10.1021/bi902137c
PMCID: PMC2867246  PMID: 20175537
13.  Engineering Galanin Analogues that Discriminate Between GalR1 and GalR2 Receptor Subtypes and Exhibit Anticonvulsant Activity Following Systemic Delivery 
Journal of medicinal chemistry  2010;53(4):1871-1875.
Galanin modulates seizures in the brain through two galanin receptor subtypes, GalR1 and GalR2. To generate systemically-active galanin receptor ligands that discriminate between GalR1 and GalR2, the GalR1-preferring analogue, Gal-B2 (or NAX 5055), was rationally redesigned to yield GalR2-preferring analogues. Systematic truncations of the N-terminal backbone led to [N-Me, des-Sar]Gal-B2, containing N-methyl tryptophan: this analogue exhibited 18-fold preference in binding toward GalR2, maintained agonist activity, and exhibited potent anticonvulsant activity in mice following intraperitoneal administration.
doi:10.1021/jm9018349
PMCID: PMC2846716  PMID: 20121116
14.  Integrated Oxidative Folding of Cysteine/Selenocysteine Containing Peptides: Improving Chemical Synthesis of Conotoxins** 
Chemical synthesis of disulfide-rich peptides requires improvements in oxidative folding and disulfide mapping. To address these challenges, we combined the use of diselenide and selectively (15N/ 13C)-labeled disulfide bridges. Conotoxin analogs, each with a pair of selenocysteines and labeled cysteines, exhibited significantly improved folding while the labeled cysteines allowed correctly folded species to be rapidly identified by NMR.
doi:10.1002/anie.200806085
PMCID: PMC2919336  PMID: 19206132
diselenide; disulfide; oxidative folding; NMR; conotoxin
15.  Synergistic and Antagonistic Interactions between Tetrodotoxin and μ-Conotoxin in Blocking Voltage-gated Sodium Channels 
Channels (Austin, Tex.)  2009;3(1):32-38.
Tetrodotoxin (TTX) is the quintessential ligand of voltage-gated sodium channels (NaVs). Like TTX, μ-conotoxin peptides are pore blockers, and both toxins have helped to define the properties of neurotoxin receptor Site 1 of NaVs. Here, we report unexpected results showing that the recently discovered μ-conotoxin KIIIA and TTX can simultaneously bind to Site 1 and act in concert. Results with saturating concentrations of peptide applied to voltage-clamped Xenopus oocytes expressing brain NaV1.2, and single-channel recordings from brain channels in lipid bilayers, show that KIIIA or its analog, KIIIA[K7A], block partially, with a residual current that can be completely blocked by TTX. In addition, the kinetics of block by TTX and peptide are each affected by the prior presence of the other toxin. For example, bound peptide slows subsequent binding of TTX (an antagonistic interaction) and slows TTX dissociation when both toxins are bound (a synergistic effect on block). The overall functional consequence resulting from the combined action of the toxins depends on the quantitative balance between these opposing actions. The results lead us to postulate that in the bi-liganded NaV complex, TTX is bound between the peptide and the selectivity filter. These observations refine our view of Site 1 and open new possibilities in NaV pharmacology.
PMCID: PMC2878737  PMID: 19221510
conotoxin; contratoxin; NaV1.2; oocyte; sodium channel; site 1; syntoxin; tetrodotoxin; voltage clamp
16.  Neuroprotective and cardioprotective conopeptides: An emerging class of drug leads 
The peptides in the venoms of predatory marine snails belonging to the genus Conus (‘cone snails’) have well-established therapeutic applications for the treatment of pain and epilepsy. This review discusses the neuroprotective and cardioprotective potential of four families of Conus peptides (conopeptides), including ω-conotoxins that target voltage-gated Ca2+ channels, conantokins that target NMDA receptors, μ-conotoxins that target voltage-gated Na+ channels, and κ- and κM-conotoxins that target K+ channels. The diversity of Conus peptides that have already been shown to exhibit neuroprotective/cardioprotective activity suggests that marine snail venoms are a potentially rich source of drug leads with diverse mechanisms.
PMCID: PMC2878759  PMID: 19333868
conopeptide; conotoxin; neuroprotection; cardioprotection; analgesic
17.  Synthesis and Applications of Polyamine Amino Acid Residues: Improving the Bioactivity of an Analgesic Neuropeptide, Neurotensin 
Journal of medicinal chemistry  2009;52(6):1514-1517.
Conjugated polyamines are potential carriers for biotherapeutics targeting the central nervous system. We describe an efficient synthesis of a polyamine-based amino acid, Lysine-trimethylene(diNosyl)-spermine(triBoc) with Dde or Fmoc orthogonal protecting groups. This nonnatural amino acid was incorporated into a neurotensin analogue using standard Fmoc-based protocols. The analogue maintained high affinity and agonist potency for neurotensin receptors and exhibited dramatically improved analgesia in mice. Our work provides a basis for use of polyamine amino acids in polypeptides.
doi:10.1021/jm801481y
PMCID: PMC2694617  PMID: 19236044
18.  Structural Requirements for a Lipoamino Acid in Modulating the Anticonvulsant Activities of the Systemically-Active Galanin Analogs 
Journal of medicinal chemistry  2009;52(5):1310-1316.
Introduction of lipoamino acid (LAA), Lys-palmitoyl, and cationization into a series of galanin analogs yielded systemically-active anticonvulsant compounds. To study the relationship between the LAA structure and anticonvulsant activity, orthogonally protected LAAs were synthesized in which the Lys side chain was coupled to fatty acids varying in length from C8 to C18, or to a monodispersed polyethylene glycol, PEG4. Galanin receptor affinity, serum stability, lipophilicity (logD) and activity in the 6 Hz mouse model of epilepsy of each of the newly synthesized analogs was determined following systemic administration. The presence of various LAAs or Lys(MPEG4) did not affect the receptor binding properties of the modified peptides, but their anticonvulsant activities varied substantially, and were generally correlated with their lipophilicity. Our results suggest that varying the length or polarity of the LAA residue adjacent to positively-charged amino acid residues may effectively modulate the antiepileptic activity of the galanin analogs.
doi:10.1021/jm801397w
PMCID: PMC2765488  PMID: 19199479
19.  Pruning Nature: Biodiversity-Derived Discovery of Novel Sodium Channel Blocking Conotoxins from Conus bullatus 
Described herein is a general approach to identify novel compounds using the biodiversity of a megadiverse group of animals; specifically, the phylogenetic lineage of the venomous gastropods that belong to the genus Conus (“cone snails”). Cone snail biodiversity was exploited to identify three new μ-conotoxins, BuIIIA, BuIIIB and BuIIIC, encoded by the fish-hunting species Conus bullatus. BuIIIA, BuIIIB and BuIIIC are strikingly divergent in their amino acid composition compared to previous μ-conotoxins known to target the voltage-gated Na channel skeletal muscle subtype Nav1.4. Our preliminary results indicate that BuIIIB and BuIIIC are potent inhibitors of Nav1.4 (average block ~96%, at a 1 μM concentration of peptide), displaying a very slow off-rate not seen in previously characterized μ-conotoxins that block Nav1.4. In addition, the three new Conus bullatus μ-conopeptides help to define a new branch of the M-superfamily of conotoxins, namely M-5. The exogene strategy used to discover these Na channel-inhibiting peptides was based on both understanding the phylogeny of Conus, as well as the molecular genetics of venom μ-conotoxin peptides previously shown to generally target voltage-gated Na channels. The discovery of BuIIIA, BuIIIB and BuIIIC Na channel blockers expands the diversity of ligands useful in determining the structure-activity relationship of voltage-gated sodium channels.
doi:10.1016/j.toxicon.2008.10.017
PMCID: PMC2677393  PMID: 18950653
Biodiversity-derived compounds; Sodium channel ligands; exogenes
20.  NMR-Based Mapping of Disulfide Bridges in Cysteine-Rich Peptides: Application to the μ-Conotoxin SxIIIA* 
Journal of the American Chemical Society  2008;130(43):14280-14286.
Disulfide-rich peptides represent a megadiverse group of natural products with very promising therapeutic potential. To accelerate their functional characterization, high-throughput chemical synthesis and folding methods are required, including efficient mapping of multiple disulfide bridges. Here, we describe a novel approach for such mapping and apply it to a three-disulfide bridged conotoxin, μ-SxIIIA (from the venom of Conus striolatus) whose discovery is also reported here for the first time. μ-SxIIIA was chemically synthesized with three cysteine residues labeled 100% with 15N/13C, while the remaining three cysteine residues were incorporated using a mixture of 70%:30% unlabeled:labeled Fmoc-protected residues. After oxidative folding, the major product was analyzed by NMR spectroscopy. Sequence-specific resonance assignments for the isotope-enriched Cys residues were determined with 2D versions of standard triple resonance (1H,13C,15N) NMR experiments and 2D [13C,1H] HSQC. Disulfide patterns were directly determined with cross-disulfide NOEs confirming that the oxidation product had the disulfide connectivities characteristic of μ-conotoxins. μ-SxIIIA was found to be a potent blocker of the sodium channel subtype NaV1.4 (IC50 = 7 nM). These results suggest that differential incorporation of isotope-labeled cysteine residues is an efficient strategy to map disulfides and should facilitate the discovery and structure-function studies of many bioactive peptides.
doi:10.1021/ja804303p
PMCID: PMC2665793  PMID: 18831583
21.  Integrating the Discovery Pipeline for Novel Compounds Targeting Ion Channels 
Many ion channels are attractive therapeutic targets for the treatment of neurological or cardiovascular diseases; there is a continuous need for selective channel-antagonists and/or agonists. Recently, several technologies have been developed that make exploration of the enormous diversity of venom-derived peptidic toxins more feasible. Integration of exogenomics with synthetic methods such as diselenide or fluorous bridges, backbone spacers and N-to-C cyclization provides an emerging technology that promises to accelerate discovery and development of natural products-based compounds. These drug discovery efforts are complemented by novel approaches to modulate the activities of ion channels and receptors. Taken together, these technologies will advance our knowledge and understanding of ion channels and will accelerate their expansion as targets for first-in-class therapeutics.
doi:10.1016/j.cbpa.2008.07.012
PMCID: PMC2630530  PMID: 18678277
22.  Conantokin-P, an Unusual Conantokin with a Long Disulfide Loop 
The conantokins are a family of Conus venom peptides (17-27AA) that are N-methyl D-aspartate (NMDA) receptor antagonists. Conantokins lack disulfide bridges (six out of seven previously characterized peptides are linear), but contain multiple residues of γ-carboxyglutamate. These post-translationally modified amino acids confer the largely helical structure of conantokins by coordinating divalent metal ions. Here, we report that a group of fish-hunting cone snails, Conus purpurascens and Conus ermineus, express a distinctive branch of the conantokin family in their venom ducts. Two novel conantokins, Conantokin-P (Con-P) and Conantokin-E (Con-E) are 24 AA long and contain five γ-carboxyglutamate residues. These two peptides are characterized by a long disulfide loop (12 amino acids including two Gla residues between the Cys residues). The oxidative folding studies of Con-P revealed that the formation of the disulfide bond proceeded significantly faster in the presence of Ca++ ions. Circular dichroism suggested that Con-P is less helical than other previously characterized conantokins. Con-P blocks NMDA receptors containing NR2B subunit with submicromolar potency. Furthermore, the subtype-selectivity for different NR2 subunits differs from that of the previously characterized conantokins. Our results suggest that different branches of the phylogenetic tree of cone snails have evolved distinct groups of conantokins, each with its own unique biochemical features.
doi:10.1016/j.toxicon.2008.04.178
PMCID: PMC2630528  PMID: 18586049
23.  Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels NaV1.2, 1.6 and 1.7 
Biochemical pharmacology  2008;75(12):2334-2344.
The excitotoxic conopeptide ι-RXIA induces repetitive action potentials in frog motor axons and seizures upon intracranial injection into mice. We recently discovered that ι-RXIA shifts the voltage-dependence of activation of voltage-gated sodium channel NaV1.6 to a more hyperpolarized level. Here, we performed voltage-clamp experiments to examine its activity against rodent NaV1.1 through NaV1.7 co-expressed with the β1 subunit in Xenopus oocytes and NaV1.8 in dissociated mouse DRG neurons. The order of sensitivity to ι-RXIA was NaV1.6 > 1.2 > 1.7, and the remaining subtypes were insensitive. The time course of ι-RXIA-activity on NaV1.6 during exposure to different peptide concentrations were well fit by single-exponential curves that provided kobs. The plot of kobs versus [ι-RXIA] was linear, consistent with a bimolecular reaction with a Kd of ~3 μM, close to the steady-state EC50 of ~2 μM. ι-RXIA has an unusual residue, D-Phe, and the analog with an L-Phe instead, ι-RXIA[L-Phe44], had a two-fold lower affinity and two-fold faster off-rate than ι-RXIA on NaV1.6 and furthermore was inactive on NaV1.2. ι-RXIA induced repetitive action potentials in mouse sciatic nerve with conduction velocities of both A- and C-fibers, consistent with the presence of NaV1.6 at nodes of Ranvier as well as in unmyelinated axons. Sixteen peptides homologous to ι-RXIA have been identified from a single species of Conus, so these peptides represent a rich family of novel sodium channel-targeting ligands.
doi:10.1016/j.bcp.2008.03.019
PMCID: PMC2700742  PMID: 18486102
channel-activation; conopeptide; excitotoxin; iota-conotoxin RXIA; neurotoxin; voltage-gated sodium channel
24.  Characterization of a novel ψ-conotoxin from Conus parius Reeve 
The M-superfamily of conotoxins currently comprises three major groups of peptides (the μ-, κM-, and ψ-families) that share a key structural characteristic, the six-Cysteine motif CC-C-C-CC, but differ with respect to their molecular targets. The ψ-family consists of M-superfamily conotoxins that are nicotinic acetylcholine receptor (nAChR) antagonists. To date, only two ψ-conotoxins, PIIIE and PIIIF, are known, both of which were isolated from a single Conus species, C. purpurascens. In this paper, we report the discovery and initial characterization of a ψ-conotoxin from another Conus species, C. parius, which we designated as PrIIIE. Its amino acid sequence, inferred from a cloned cDNA, differed significantly from those of PIIIE and PIIIF. Its bioactivity was investigated by using the synthetic form of the peptide in mice and fish bioassays. At 2.5 nmole, the synthetic peptide induced flaccid paralysis in goldfish in ca. 4 min but did not induce any remarkable behavior in mice (after i.c. and i.p. injection of up to 10 nmole of peptide) and did not block action potential in directly-stimulated frog muscle preparations. Electrophysiological experiments carried out to measure inhibition of ion currents through mouse nAChR receptors expressed in oocytes revealed that PrIIIE (IC50 ∼ 250 nM) was significantly more potent than PIIIE (IC50 ∼ 7000 nM) and that PrIIIE showed higher ihhibition potency against the adult-type than the fetal type nAChR. In similar electrophysiological assays, PrIIIE showed no inhibitory effects against the mouse muscle subtype Na+ channel isoform Nav 1.4. The discovery of this ψ-conotoxin from a Conus species that belongs to the subgenus Phasmoconus, which is distinct from and larger than the clade in which C. purpurascens belongs, suggests that greater structural and functional diversity of ψ-conotoxins remains to be discovered from the members of this subgenus.
doi:10.1016/j.toxicon.2007.07.009
PMCID: PMC2669105  PMID: 18054976
25.  Structure and Sodium Channel Activity of an Excitatory I1-Superfamily Conotoxin † 
Biochemistry  2007;46(35):9929-9940.
Conotoxin ι-RXIA, from the fish-hunting species Conus radiatus, is a member of the recently characterized I1-superfamily, which contains eight cysteine residues arranged in a −C-C-CC-CC-C-C- pattern. ι-RXIA (formerly designated r11a) is one of three characterized I1 peptides in which the third last residue is post-translationally isomerized to the d- configuration. Naturally occurring ι-RXIA with d-Phe44 is significantly more active as an excitotoxin than the l-Phe analogue both in vitro and in vivo. We have determined the solution structures of both forms by NMR spectroscopy, the first for an I1-superfamily member. The disulfide connectivities were determined from structure calculations and confirmed chemically as 5-19, 12-22, 18-27, and 21-38, suggesting that ι-RXIA has an ICK structural motif with one additional disulfide (21-38). Indeed, apart from the first few residues, the structure is well defined up to around residue 35 and does adopt an ICK structure. The C-terminal region, including Phe44, is disordered. Comparison of the d-Phe44 and l-Phe44 forms indicates that the switch from one enantiomer to the other has very little effect on the structure, even though it is clearly important for receptor interaction based on activity data. Finally, we identify the target of ι-RXIA as a voltage-gated sodium channel; ι-RXIA is an agonist, shifting the voltage dependence of activation of mouse NaV1.6 expressed in Xenopus oocytes to more hyperpolarized potentials. Thus, there is a convergence of structure and function in ι-RXIA, as its disulfide pairing and structure resemble those of funnel web spider toxins that also target sodium channels.
doi:10.1021/bi700797f
PMCID: PMC2566796  PMID: 17696362

Results 1-25 (26)