Search tips
Search criteria

Results 1-18 (18)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses 
Veterinary Research  2014;45(1):118.
Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection. HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1 virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1 virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3.
Electronic supplementary material
The online version of this article (doi:10.1186/s13567-014-0118-3) contains supplementary material, which is available to authorized users.
PMCID: PMC4246556  PMID: 25431115
2.  Early Responses of Natural Killer Cells in Pigs Experimentally Infected with 2009 Pandemic H1N1 Influenza A Virus 
PLoS ONE  2014;9(6):e100619.
Natural killer (NK) cells are important players in the innate immune response against influenza A virus and the activating receptor NKp46, which binds hemagglutinin on the surface of infected cells, has been assigned a role in this context. As pigs are natural hosts for influenza A viruses and pigs possess both NKp46− and NKp46+ NK cells, they represent a good animal model for studying the role of the NKp46 receptor during influenza. We explored the role of NK cells in piglets experimentally infected with 2009 pandemic H1N1 influenza virus by flow cytometric analyses of cells isolated from blood and lung tissue and by immunostaining of lung tissue sections. The number of NKp46+ NK cells was reduced while NKp46− NK cells remained unaltered in the blood 1–3 days after infection. In the lungs, the intensity of NKp46 expression on NK cells was increased during the first 3 days, and areas where influenza virus nucleoprotein was detected were associated with increased numbers of NKp46+ NK cells when compared to uninfected areas. NKp46+ NK cells in the lung were neither found to be infected with influenza virus nor to be undergoing apoptosis. The binding of porcine NKp46 to influenza virus infected cells was verified in an in vitro assay. These data support the involvement of porcine NKp46+ NK cells in the local immune response against influenza virus.
PMCID: PMC4067341  PMID: 24955764
3.  Virus Pathotype and Deep Sequencing of the HA Gene of a Low Pathogenicity H7N1 Avian Influenza Virus Causing Mortality in Turkeys 
PLoS ONE  2014;9(1):e87076.
Low pathogenicity avian influenza (LPAI) viruses of the H7 subtype generally cause mild disease in poultry. However the evolution of a LPAI virus into highly pathogenic avian influenza (HPAI) virus results in the generation of a virus that can cause severe disease and death. The classification of these two pathotypes is based, in part, on disease signs and death in chickens, as assessed in an intravenous pathogenicity test, but the effect of LPAI viruses in turkeys is less well understood. During an investigation of LPAI virus infection of turkeys, groups of three-week-old birds inoculated with A/chicken/Italy/1279/99 (H7N1) showed severe disease signs and died or were euthanised within seven days of infection. Virus was detected in many internal tissues and organs from culled birds. To examine the possible evolution of the infecting virus to a highly pathogenic form in these turkeys, sequence analysis of the haemagglutinin (HA) gene cleavage site was carried out by analysing multiple cDNA amplicons made from swabs and tissue sample extracts employing Sanger and Next Generation Sequencing. In addition, a RT-PCR assay to detect HPAI virus was developed. There was no evidence of the presence of HPAI virus in either the virus used as inoculum or from swabs taken from infected birds. However, a small proportion (<0.5%) of virus carried in individual tracheal or liver samples did contain a molecular signature typical of a HPAI virus at the HA cleavage site. All the signature sequences were identical and were similar to HPAI viruses collected during the Italian epizootic in 1999/2000. We assume that the detection of HPAI virus in tissue samples following infection with A/chicken/Italy/1279/99 reflected amplification of a virus present at very low levels within the mixed inoculum but, strikingly, we observed no new HPAI virus signatures in the amplified DNA analysed by deep-sequencing.
PMCID: PMC3904975  PMID: 24489838
4.  Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity 
Scientific Reports  2013;3:2478.
Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next activation of lung NK cells upon HPAI virus infection was analysed. Infection with a H9N2 LPAI virus resulted in the presence of viral RNA in the lungs which coincided with enhanced activation of lung NK cells. The presence of H5N1 viruses, measured by detection of viral RNA, did not induce activation of lung NK cells. This suggests that decreased NK-cell activation may be one of the mechanisms associated with the enhanced pathogenicity of H5N1 viruses.
PMCID: PMC3748423  PMID: 23963354
5.  18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells 
Virology Journal  2012;9:230.
One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes.
The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells.
Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.
PMCID: PMC3499178  PMID: 23043930
Reference gene; Housekeeping gene; qRT-PCR; Data normalisation; Influenza A viruses; H5N1; H1N1; H2N3
6.  Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys 
PLoS ONE  2012;7(9):e45059.
Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.
PMCID: PMC3445558  PMID: 23028760
7.  Mammalian Innate Resistance to Highly Pathogenic Avian Influenza H5N1 Virus Infection Is Mediated through Reduced Proinflammation and Infectious Virus Release 
Journal of Virology  2012;86(17):9201-9210.
Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans.
PMCID: PMC3416141  PMID: 22718824
8.  Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes 
PLoS ONE  2012;7(3):e32400.
Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination. Both vaccines elicited strong antibody responses, which included high levels of influenza-specific IgG1 and haemagglutination inhibition titres to H1 virus. Immunisation with the adjuvanted split vaccine induced significantly higher interferon gamma production, increased frequency of interferon gamma-producing cells and proliferation of CD4−CD8+ (cytotoxic) and CD4+CD8+ (helper) T cells, after in vitro re-stimulation. Despite significant differences in the magnitude and breadth of immune responses in the two vaccinated and mock treated groups, similar quantities of viral RNA were detected from the nasal cavity in all pigs after live virus challenge. The present study provides support for the use of the pig as a valid experimental model for influenza infections in humans, including the assessment of protective efficacy of therapeutic interventions.
PMCID: PMC3302873  PMID: 22427834
9.  Within-host variation of avian influenza viruses 
The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies. Here, we describe some results of a study in which turkeys, ducks and chickens were infected with either one of two H5N1 or one of three H7N1 viruses, and the degree of sequence variation within an individual infected avian host was examined. We developed ‘deep amplicon’ sequence analysis for this work, and the methods and results provide a background framework for application to disease outbreaks in the field.
PMCID: PMC2865086  PMID: 19687042
chickens; turkeys; ducks; sequence variation; avian influenza viruses
10.  Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs 
PLoS ONE  2010;5(2):e9068.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
PMCID: PMC2816721  PMID: 20140096
11.  Serologic Cross-Reactivity with Pandemic (H1N1) 2009 Virus in Pigs, Europe 
Emerging Infectious Diseases  2010;16(1):96-99.
We tested serum samples from pigs infected or vaccinated with European swine influenza viruses (SIVs) in hemagglutination-inhibition assays against pandemic (H1N1) 2009 virus and related North American SIVs. We found more serologic cross-reaction than expected. Data suggest pigs in Europe may have partial immunity to pandemic (H1N1) 2009 virus.
PMCID: PMC2874381  PMID: 20031049
Viruses; influenza; pigs; Europe; North America; pandemic (H1N1) 2009; serology; cross-reaction; expedited; dispatch
12.  Experimental infection of Foxes with European bat Lyssaviruses type-1 and 2 
Since 1954, there have been in excess of 800 cases of rabies as a result of European Bat Lyssaviruses types 1 and 2 (EBLV-1, EBLV-2) infection, mainly in Serotine and Myotis bats respectively. These viruses have rarely been reported to infect humans and terrestrial mammals, as the only exceptions are sheep in Denmark, a stone marten in Germany and a cat in France. The purpose of this study was to investigate the susceptibility of foxes to EBLVs using silver foxes (Vulpes vulpes) as a model.
Our experimental studies have shown that the susceptibility of foxes to EBLVs is low by the intramuscular (IM) route, however, animals were sensitive to intracranial (IC) inoculation. Mortality was 100% for both EBLV-1 (~4.5 logs) and EBLV-2 (~3.0 logs) delivered by the IC route. Virus dissemination and inflammatory infiltrate in the brain were demonstrated but virus specific neutralising antibody (VNA) was limited (log(ED50) = 0.24–2.23 and 0.95–2.39 respectively for specific EBLV-1 and EBLV-2). Foxes were also susceptible, at a low level, to peripheral (IM) infection (~3.0 logs) with EBLV-1 but not EBLV-2. Three out of 21 (14.3%) foxes developed clinical signs between 14 and 24 days post-EBLV-1 infection. None of the animals given EBLV-2 developed clinical disease.
These data suggest that the chance of a EBLV spill-over from bat to fox is low, but with a greater probability for EBLV-1 than for EBLV-2 and that foxes seem to be able to clear the virus before it reaches the brain and cause a lethal infection.
PMCID: PMC2694770  PMID: 19454020
13.  A Simplified 4-Site Economical Intradermal Post-Exposure Rabies Vaccine Regimen: A Randomised Controlled Comparison with Standard Methods 
The need for economical rabies post-exposure prophylaxis (PEP) is increasing in developing countries. Implementation of the two currently approved economical intradermal (ID) vaccine regimens is restricted due to confusion over different vaccines, regimens and dosages, lack of confidence in intradermal technique, and pharmaceutical regulations. We therefore compared a simplified 4-site economical PEP regimen with standard methods.
Two hundred and fifty-four volunteers were randomly allocated to a single blind controlled trial. Each received purified vero cell rabies vaccine by one of four PEP regimens: the currently accepted 2-site ID; the 8-site regimen using 0.05 ml per ID site; a new 4-site ID regimen (on day 0, approximately 0.1 ml at 4 ID sites, using the whole 0.5 ml ampoule of vaccine; on day 7, 0.1 ml ID at 2 sites and at one site on days 28 and 90); or the standard 5-dose intramuscular regimen. All ID regimens required the same total amount of vaccine, 60% less than the intramuscular method. Neutralising antibody responses were measured five times over a year in 229 people, for whom complete data were available.
All ID regimens showed similar immunogenicity. The intramuscular regimen gave the lowest geometric mean antibody titres. Using the rapid fluorescent focus inhibition test, some sera had unexpectedly high antibody levels that were not attributable to previous vaccination. The results were confirmed using the fluorescent antibody virus neutralisation method.
This 4-site PEP regimen proved as immunogenic as current regimens, and has the advantages of requiring fewer clinic visits, being more practicable, and having a wider margin of safety, especially in inexperienced hands, than the 2-site regimen. It is more convenient than the 8-site method, and can be used economically with vaccines formulated in 1.0 or 0.5 ml ampoules. The 4-site regimen now meets all requirements of immunogenicity for PEP and can be introduced without further studies.
Trial Registration ISRCTN 30087513
Author Summary
All human deaths from rabies result from failure to give adequate prophylaxis. After a rabid animal bite, immediate wound cleaning, rabies vaccine and immunoglobulin injections effectively prevent fatal infection. Immunoglobulin is very rarely available in developing countries, where prevention relies on efficacious vaccine. WHO approved vaccines are prohibitively expensive, but 2 economical regimens (injecting small amounts of vaccine intradermally, into the skin, at 2 or 8 sites on the first day of the course) have been used for many years in a few places. Practical or perceived difficulties have restricted widespread uptake of economical methods. These could largely be overcome by introducing a new, simpler regimen, involving 4 site injections on the first day. We vaccinated volunteers to compare the antibody levels induced by the 4-site intradermal regimen with those induced by the current 2-site and 8-site regimens and the “gold standard” intramuscular regimen favoured internationally. All the economical intradermal regimens were at least as immunogenic as the intramuscular method. The results provide sufficient evidence that the 4-site regimen meets the criteria necessary for its recommendation for use wherever the cost of vaccine is prohibitive and especially where 2 or more patients are treated on the same day.
PMCID: PMC2292256  PMID: 18431444
14.  European Bat Lyssavirus Type 2 RNA in Myotis daubentonii 
Emerging Infectious Diseases  2006;12(7):1142-1144.
Organ distribution of European bat lyssavirus type 2 viral RNA in its reservoir host, Myotis daubentonii (Daubenton's bat), was measured with a novel quantitative reverse transcription–polymerase chain reaction assay. High levels of genomic RNA were found in the brain and were also detectable in the tongue, bladder, and stomach.
PMCID: PMC3291071  PMID: 16836837
European bat lyssavirus; rabies; quantitative PCR; neurotropism; dispatch
15.  European Bat Lyssavirus in Scottish Bats 
Emerging Infectious Diseases  2005;11(4):572-578.
Daubenton bats may roost infrequently in human dwellings, so risk for human contact is low.
We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests.
PMCID: PMC3320325  PMID: 15829196
Lyssavirus; EBLV-2; seroprevalence; Daubenton bats; Scotland; research
17.  Biochemical Requirements of Virus Wrapping by the Endoplasmic Reticulum: Involvement of ATP and Endoplasmic Reticulum Calcium Store during Envelopment of African Swine Fever Virus 
Journal of Virology  2000;74(5):2151-2160.
Enwrapment by membrane cisternae has emerged recently as a mechanism of envelopment for large enveloped DNA viruses, such as herpesviruses, poxviruses, and African swine fever (ASF) virus. For both ASF virus and the poxviruses, wrapping is a multistage process initiated by the recruitment of capsid proteins onto membrane cisternae of the endoplasmic reticulum (ER) or associated ER-Golgi intermediate membrane compartments. Capsid assembly induces progressive bending of membrane cisternae into the characteristic shape of viral particles, and envelopment provides virions with two membranes in one step. We have used biochemical assays for ASF virus capsid recruitment, assembly, and envelopment to define the cellular processes important for the enwrapment of viruses by membrane cisternae. Capsid assembly on the ER membrane, and envelopment by ER cisternae, were inhibited when cells were depleted of ATP or depleted of calcium by incubation with A23187 and EDTA or the ER calcium ATPase inhibitor, thapsigargin. Electron microscopy analysis showed that cells depleted of calcium were unable to assemble icosahedral particles. Instead, assembly sites contained crescent-shaped and bulbous structures and, in rare cases, empty closed five-sided particles. Interestingly, recruitment of the capsid protein from the cytosol onto the ER membrane did not require ATP or an intact ER calcium store. The results show that following recruitment of the virus capsid protein onto the ER membrane, subsequent stages of capsid assembly and enwrapment are dependent on ATP and are regulated by the calcium gradients present across the ER membrane cisternae.
PMCID: PMC111695  PMID: 10666244
18.  African Swine Fever Virus Is Wrapped by the Endoplasmic Reticulum 
Journal of Virology  1998;72(3):2373-2387.
African swine fever (ASF) virus is a large DNA virus that shares the striking icosahedral symmetry of iridoviruses and the genomic organization of poxviruses. Both groups of viruses have a complex envelope structure. In this study, the mechanism of formation of the inner envelope of ASF virus was investigated. Examination of thin cryosections by electron microscopy showed two internal membranes in mature intracellular virions and all structural intermediates. These membranes were in continuity with intracellular membrane compartments, suggesting that the virus gained two membranes from intracellular membrane cisternae. Immunogold electron microscopy showed the viral structural protein p17 and resident membrane proteins of the endoplasmic reticulum (ER) within virus assembly sites, virus assembly intermediates, and mature virions. Resident ER proteins were also detected by Western blotting of isolated virions. The data suggested the ASF virus was wrapped by the ER. Analysis of the published sequence of ASF virus (R. J. Yanez et al., Virology 208:249–278, 1995) revealed a reading frame, XP124L, that encoded a protein predicted to translocate into the lumen of the ER. Pulse-chase immunoprecipitation and glycosylation analysis of pXP124L, the product of the XP124L gene, showed that pXP124L was retained in the ER lumen after synthesis. When analyzed by immunogold electron microscopy, pXP124L localized to virus assembly intermediates and fully assembled virions. Western blot analysis detected pXP124L in virions isolated from Percoll gradients. The packaging of pXP124L from the lumen of the ER into the virion is consistent with ASF virus being wrapped by ER cisternae: a mechanism which explains the presence of two membranes in the viral envelope.
PMCID: PMC109537  PMID: 9499098

Results 1-18 (18)