PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Macroscopic Biofilms in Fracture-Dominated Sediment That Anaerobically Oxidize Methane ▿ †  
Applied and Environmental Microbiology  2011;77(19):6780-6787.
Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 107 to 108 cells cm−3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (−35 to −43‰) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments.
doi:10.1128/AEM.00288-11
PMCID: PMC3187087  PMID: 21821755
2.  Role of the rapA Gene in Controlling Antibiotic Resistance of Escherichia coli Biofilms▿ †  
Antimicrobial Agents and Chemotherapy  2007;51(10):3650-3658.
By using a high-throughput screening method, a mutant of a uropathogenic Escherichia coli strain affected in the rapA gene was isolated. The mutant formed normal-architecture biofilms but showed decreased penicillin G resistance, although the mutation did not affect planktonic cell resistance. Transcriptome analysis showed that 22 genes were down-regulated in the mutant biofilm. One of these genes was yhcQ, which encodes a putative multidrug resistance pump. Mutants with mutations in this gene also formed biofilms with decreased resistance, although the effect was less pronounced than that of the rapA mutation. Thus, an additional mechanism(s) controlled by a rapA-regulated gene(s) was involved in wild-type biofilm resistance. The search for this mechanism was guided by the fact that another down-regulated gene in rapA biofilms, yeeZ, is suspected to be involved in extra cell wall-related functions. A comparison of the biofilm matrix of the wild-type and rapA strains revealed decreased polysaccharide quantities and coverage in the mutant biofilms. Furthermore, the (fluorescent) functional penicillin G homologue Bocillin FL penetrated the mutant biofilms more readily. The results strongly suggest a dual mechanism for the wild-type biofilm penicillin G resistance, retarded penetration, and effective efflux. The results of studies with an E. coli K-12 strain pointed to the same conclusion. Since efflux and penetration can be general resistance mechanisms, tests were conducted with other antibiotics. The rapA biofilm was also more sensitive to norfloxacin, chloramphenicol, and gentamicin.
doi:10.1128/AAC.00601-07
PMCID: PMC2043260  PMID: 17664315
3.  Loss of Bacterial Diversity during Antibiotic Treatment of Intubated Patients Colonized with Pseudomonas aeruginosa▿  
Journal of Clinical Microbiology  2007;45(6):1954-1962.
Management of airway infections caused by Pseudomonas aeruginosa is a serious clinical challenge, but little is known about the microbial ecology of airway infections in intubated patients. We analyzed bacterial diversity in endotracheal aspirates obtained from intubated patients colonized by P. aeruginosa by using 16S rRNA clone libraries and microarrays (PhyloChip) to determine changes in bacterial community compositions during antibiotic treatment. Bacterial 16S rRNA genes were absent from aspirates obtained from patients briefly intubated for elective surgery but were detected by PCR in samples from all patients intubated for longer periods. Sequencing of 16S rRNA clone libraries demonstrated the presence of many orally, nasally, and gastrointestinally associated bacteria, including known pathogens, in the lungs of patients colonized with P. aeruginosa. PhyloChip analysis detected the same organisms and many additional bacterial groups present at low abundance that were not detected in clone libraries. For each patient, both culture-independent methods showed that bacterial diversity decreased following the administration of antibiotics, and communities became dominated by a pulmonary pathogen. P. aeruginosa became the dominant species in six of seven patients studied, despite treatment of five of these six with antibiotics to which it was sensitive in vitro. Our data demonstrate that the loss of bacterial diversity under antibiotic selection is highly associated with the development of pneumonia in ventilated patients colonized with P. aeruginosa. Interestingly, PhyloChip analysis demonstrated reciprocal changes in abundance between P. aeruginosa and the class Bacilli, suggesting that these groups may compete for a similar ecological niche and suggesting possible mechanisms through which the loss of microbial diversity may directly contribute to pathogen selection and persistence.
doi:10.1128/JCM.02187-06
PMCID: PMC1933106  PMID: 17409203
4.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB 
A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera screening, standard alignment, and taxonomic classification using multiple published taxonomies. It was found that there is incongruent taxonomic nomenclature among curators even at the phylum level. Putative chimeras were identified in 3% of environmental sequences and in 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages in the Archaea and Bacteria.
doi:10.1128/AEM.03006-05
PMCID: PMC1489311  PMID: 16820507
5.  NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes 
Nucleic Acids Research  2006;34(Web Server issue):W394-W399.
Microbiologists conducting surveys of bacterial and archaeal diversity often require comparative alignments of thousands of 16S rRNA genes collected from a sample. The computational resources and bioinformatics expertise required to construct such an alignment has inhibited high-throughput analysis. It was hypothesized that an online tool could be developed to efficiently align thousands of 16S rRNA genes via the NAST (Nearest Alignment Space Termination) algorithm for creating multiple sequence alignments (MSA). The tool was implemented with a web-interface at . Each user-submitted sequence is compared with Greengenes' ‘Core Set’, comprising ∼10 000 aligned non-chimeric sequences representative of the currently recognized diversity among bacteria and archaea. User sequences are oriented and paired with their closest match in the Core Set to serve as a template for inserting gap characters. Non-16S data (sequence from vector or surrounding genomic regions) are conveniently removed in the returned alignment. From the resulting MSA, distance matrices can be calculated for diversity estimates and organisms can be classified by taxonomy. The ability to align and categorize large sequence sets using a simple interface has enabled researchers with various experience levels to obtain bacterial and archaeal community profiles.
doi:10.1093/nar/gkl244
PMCID: PMC1538769  PMID: 16845035
6.  Role and Regulation of σs in General Resistance Conferred by Low-Shear Simulated Microgravity in Escherichia coli 
Journal of Bacteriology  2004;186(24):8207-8212.
Life on Earth evolved in the presence of gravity, and thus it is of interest from the perspective of space exploration to determine if diminished gravity affects biological processes. Cultivation of Escherichia coli under low-shear simulated microgravity (SMG) conditions resulted in enhanced stress resistance in both exponential- and stationary-phase cells, making the latter superresistant. Given that microgravity of space and SMG also compromise human immune response, this phenomenon constitutes a potential threat to astronauts. As low-shear environments are encountered by pathogens on Earth as well, SMG-conferred resistance is also relevant to controlling infectious disease on this planet. The SMG effect resembles the general stress response on Earth, which makes bacteria resistant to multiple stresses; this response is σs dependent, irrespective of the growth phase. However, SMG-induced increased resistance was dependent on σs only in stationary phase, being independent of this sigma factor in exponential phase. σs concentration was some 30% lower in exponential-phase SMG cells than in normal gravity cells but was twofold higher in stationary-phase SMG cells. While SMG affected σs synthesis at all levels of control, the main reasons for the differential effect of this gravity condition on σs levels were that it rendered the sigma protein less stable in exponential phase and increased rpoS mRNA translational efficiency. Since σs regulatory processes are influenced by mRNA and protein-folding patterns, the data suggest that SMG may affect these configurations.
doi:10.1128/JB.186.24.8207-8212.2004
PMCID: PMC532419  PMID: 15576768

Results 1-6 (6)