PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal 
BMJ Case Reports  2009;2009:bcr06.2009.1999.
We identified a female patient with mental retardation and sensory hyperarousal. She has a de novo paracentric inversion of one X chromosome with completely skewed inactivation of the normal X chromosome. We aimed to identify whether a single gene or gene region caused her cognitive and behavioural impairment and that of others. Fluorescent in situ hybridisation (FISH) showed that the centromeric breakpoint disrupts a single gene: ARHGEF9 (CDC42 guanine nucleotide exchange factor (GEF) 9). We also found that the levels of the ARHGEF9 transcript from the patient are 10-fold less than those found in control samples. ARHGEF9 encodes a RhoGEF family protein: collybistin (hPEM), which is highly expressed in the brain. Collybistin can regulate actin cytoskeletal dynamics and may also modulate GABAergic and glycinergic neurotransmission through binding of a scaffolding protein, gephyrin, at the synapse. This potential dual role may explain both the mental retardation and hyperarousal observed in our patient.
doi:10.1136/bcr.06.2009.1999
PMCID: PMC3028392  PMID: 21731583
2.  Loss of Bacterial Diversity during Antibiotic Treatment of Intubated Patients Colonized with Pseudomonas aeruginosa▿  
Journal of Clinical Microbiology  2007;45(6):1954-1962.
Management of airway infections caused by Pseudomonas aeruginosa is a serious clinical challenge, but little is known about the microbial ecology of airway infections in intubated patients. We analyzed bacterial diversity in endotracheal aspirates obtained from intubated patients colonized by P. aeruginosa by using 16S rRNA clone libraries and microarrays (PhyloChip) to determine changes in bacterial community compositions during antibiotic treatment. Bacterial 16S rRNA genes were absent from aspirates obtained from patients briefly intubated for elective surgery but were detected by PCR in samples from all patients intubated for longer periods. Sequencing of 16S rRNA clone libraries demonstrated the presence of many orally, nasally, and gastrointestinally associated bacteria, including known pathogens, in the lungs of patients colonized with P. aeruginosa. PhyloChip analysis detected the same organisms and many additional bacterial groups present at low abundance that were not detected in clone libraries. For each patient, both culture-independent methods showed that bacterial diversity decreased following the administration of antibiotics, and communities became dominated by a pulmonary pathogen. P. aeruginosa became the dominant species in six of seven patients studied, despite treatment of five of these six with antibiotics to which it was sensitive in vitro. Our data demonstrate that the loss of bacterial diversity under antibiotic selection is highly associated with the development of pneumonia in ventilated patients colonized with P. aeruginosa. Interestingly, PhyloChip analysis demonstrated reciprocal changes in abundance between P. aeruginosa and the class Bacilli, suggesting that these groups may compete for a similar ecological niche and suggesting possible mechanisms through which the loss of microbial diversity may directly contribute to pathogen selection and persistence.
doi:10.1128/JCM.02187-06
PMCID: PMC1933106  PMID: 17409203
3.  Ventilation and oxygenation induce endothelial nitric oxide synthase gene expression in the lungs of fetal lambs. 
Journal of Clinical Investigation  1997;100(6):1448-1458.
At birth, ventilation and oxygenation immediately decrease pulmonary vascular resistance (PVR) and increase pulmonary blood flow (PBF); more gradual changes occur over the next several hours. Nitric oxide, produced by endothelial nitric oxide synthase (eNOS), mediates these gradual changes. To determine how ventilation and oxygenation affect eNOS gene expression, 12 fetal lambs were ventilated for 8 h without changing fetal descending aortic blood gases or pH (rhythmic distension) or with 100% oxygen (O2 ventilation). Vascular pressures and PBF were measured. Total RNA, protein, and tissue sections were prepared from lung tissue for RNase protection assays, Western blotting, and in situ hybridization. O2 ventilation increased PBF and decreased PVR more than rhythmic distension (P < 0.05). Rhythmic distension increased eNOS mRNA expression; O2 ventilation increased eNOS mRNA expression more and increased eNOS protein expression (P < 0.05). To define the mechanisms responsible for these changes, ovine fetal pulmonary arterial endothelial cells were exposed to 1, 21, or 95% O2 or to shear stress. 95% O2 increased eNOS mRNA and protein expression (P < 0.05). Shear stress increased eNOS mRNA and protein expression (P < 0.05). Increased oxygenation but more importantly increased PBF with increased shear stress induce eNOS gene expression and contribute to pulmonary vasodilation after birth.
PMCID: PMC508323  PMID: 9294110
5.  Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus. 
Molecular and Cellular Biology  1992;12(5):2124-2134.
The adjacent C4 and P450c21 genes encode the fourth component of serum complement and steroid 21-hydroxylase respectively, and are tandemly duplicated in the human, murine, and bovine genomes. We recently cloned a cDNA for another duplicated gene, operationally termed X, which overlaps the 3' end of human P450c21 and has the opposite transcriptional orientation. Thus, the organization of the locus is 5'-C4A-21A-XA-C4B-21B-XB-3' (Y. Morel, J. Bristow, S. E. Gitelman, and W. L. Miller, Proc. Natl. Acad. Sci. USA 86:6582-6586, 1989). To determine how this locus was duplicated, we sequenced the DNA at the duplication boundaries and the 7 kb between P450c21A and C4B comprising the XA locus. The sequences located the duplication boundaries precisely and indicate that the duplication occurred by nonhomologous recombination. The boundaries are substantially different from those of the corresponding duplication in the mouse genome, suggesting that similar gene duplications may have occurred independently in ancestors of rodents and primates after mammalian speciation. Compared with XB, the XA gene is truncated at its 5' end and bears a 121-bp intragenic deletion causing a frameshift and premature translational stop signal. Nevertheless, XA is transcribed into a stable 2.6-kb polyadenylated RNA that is expressed uniquely in the adrenal gland.
Images
PMCID: PMC364384  PMID: 1373808
6.  Cardiac metabolism during exercise in healthy volunteers measured by 31P magnetic resonance spectroscopy 
British Heart Journal  1991;65(1):25-30.
A technique was devised for individuals to exercise prone in a magnet during magnetic resonance spectroscopy of the heart and phosphorus-31 magnetic resonance spectra of the heart were obtained by the phase modulated rotating frame imaging technique in six healthy volunteers during steady state dynamic quadriceps exercise. During prone exercise heart rate, blood pressure, and total body oxygen consumption were measured at increasing loads and the results were compared with those during Bruce protocol treadmill exercise. During prone exercise with a 5 kg load the heart rate was similar and the systolic and diastolic blood pressures were higher than those during stage 1 of the Bruce protocol. The rate-pressure products were similar but the total body oxygen consumption was lower during prone exercise. There was no difference in the ratio of phosphocreatine to adenosine triphosphate during rest and exercise.
Thus during exercise that produced a local cardiac stress equal to or greater than that during stage 1 of the Bruce protocol treadmill exercise, the energy requirements of the normal human myocardium were adequately supplied by oxidative phosphorylation.
PMCID: PMC1024458  PMID: 1993127
7.  Hepatic oxygen and glucose metabolism in the fetal lamb. Response to hypoxia. 
Journal of Clinical Investigation  1983;71(5):1047-1061.
Although the fetal liver is an active metabolic organ, its oxygen and glucose requirements have not previously been described. We measured hepatic blood flows and the oxygen and glucose differences across the liver in 12 late gestation fetal lambs in utero. Four animals were studied at least 1 wk postsurgically and again 2-5 d later to assess daily variations in hepatic blood flow and metabolism (group I). A second group of eight animals was studied 3-5 d postsurgically during a control period and during acute fetal hypoxia (group II). Under control conditions total hepatic blood flow averaged 400 ml/min per 100 g in both groups, and 75-80% was of umbilical origin. Liver blood flow and oxygen consumption were usually similar during repeated measurements, but in one animal varied considerably. During periods of normoxia, oxygen consumption for both the right and left lobes of liver was 4 ml/min per 100 g. Oxygen consumption of the whole liver accounted for 20% of total fetal oxygen consumption. This was achieved with oxygen extraction of 10-15%, so that hepatic venous blood was well oxygenated and provided an important source of oxygen for other fetal tissues. Under control conditions we could demonstrate no net hepatic uptake or release of glucose suggesting that the liver ultimately utilizes another carbon source to support its oxidative metabolism. During acute hypoxia total liver blood flow and its umbilical venous contribution both fell by 20%. Blood flow to the right lobe of the liver fell twice as much as that to the left lobe. Hepatic oxygen consumption was linearly related to oxygen delivery during the control and hypoxic periods. Consequently, right hepatic oxygen uptake fell by 45% whereas left hepatic oxygen uptake was unchanged, suggesting a functional difference between the lobes. During hypoxia glucose was released from both liver lobes; 6 mg/min per 100 g for the right lobe and 9 mg/min per 100 g for the left lobe. Total hepatic release of glucose was estimated to nearly equal umbilical uptake, so that 45% of the glucose available to fetal tissues was of hepatic origin. We conclude that the fetal liver responds to acute hypoxia by reducing its own oxygen consumption and releasing glucose to facilitate anaerobic metabolism.
PMCID: PMC436966  PMID: 6682864

Results 1-12 (12)