PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Fms-Like Tyrosine Kinase 3 Ligand Controls Formation of Regulatory T Cells in Autoimmune Arthritis 
PLoS ONE  2013;8(1):e54884.
Fms-like tyrosine kinase 3 ligand (Flt3L) is known as the primary differentiation and survival factor for dendritic cells (DCs). Furthermore, Flt3L is involved in the homeostatic feedback loop between DCs and regulatory T cell (Treg). We have previously shown that Flt3L accumulates in the synovial fluid in rheumatoid arthritis (RA) and that local exposure to Flt3L aggravates arthritis in mice, suggesting a possible involvement in RA pathogenesis. In the present study we investigated the role of Flt3L on DC populations, Tregs as well as inflammatory responses in experimental antigen-induced arthritis. Arthritis was induced in mBSA-immunized mice by local knee injection of mBSA and Flt3L was provided by daily intraperitoneal injections. Flow cytometry analysis of spleen and lymph nodes revealed an increased formation of DCs and subsequently Tregs in mice treated with Flt3L. Flt3L-treatment was also associated with a reduced production of mBSA specific antibodies and reduced levels of the pro-inflammatory cytokines IL-6 and TNF-α. Morphological evaluation of mBSA injected joints revealed reduced joint destruction in Flt3L treated mice. The role of DCs in mBSA arthritis was further challenged in an adoptive transfer experiment. Transfer of DCs in combination with T-cells from mBSA immunized mice, predisposed naïve recipients for arthritis and production of mBSA specific antibodies. We provide experimental evidence that Flt3L has potent immunoregulatory properties. Flt3L facilitates formation of Treg cells and by this mechanism reduces severity of antigen-induced arthritis in mice. We suggest that high systemic levels of Flt3L have potential to modulate autoreactivity and autoimmunity.
doi:10.1371/journal.pone.0054884
PMCID: PMC3549988  PMID: 23349985
2.  Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes 
Nucleic Acids Research  2012;40(17):e130.
Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell’s plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs.
doi:10.1093/nar/gks463
PMCID: PMC3458529  PMID: 22618874
3.  Phenotype and Function of CD25-Expressing B Lymphocytes Isolated from Human Umbilical Cord Blood 
Background. We have shown that approximately 30% of human peripheral blood B-cells express CD25. B cells expressing CD25 display a mature phenotype belonging to the memory B-cell population and have a better proliferative and antigen-presenting capacity. The aim of the present study was to characterize the CD25-expressing subset of B cells in human cord blood. Material and Methods. Mononuclear cell fraction from human cord blood (n = 34) and peripheral adult blood (n = 22) was sorted into CD20+CD25+ and CD20+CD25− B-cell populations. Phenotype and function of these B-cell populations were compared using flow cytometry, proliferation, cytokine production, and immunoglobulin secretion. Results. CD25-expressing B cells are a limited population of cord blood mononuclear cells representing 5% of the CD20+ B cells. They are characterised by high expression of CD5 in cord blood and CD27 in adult blood. CD25-expressing B cells express a functional IL-2 receptor and high levels of CC-chemokine receptors and spontaneously produce antibodies of IgG and IgM subclass. Conclusions. CD25 expression is a common denominator of a specific immunomodulatory B-cell subset ready to proliferate upon IL-2 stimulation, possibly ready to migrate and home into the peripheral tissue for further differentiation/action.
doi:10.1155/2011/481948
PMCID: PMC3175414  PMID: 21941578
4.  The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis 
Introduction
Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.
Methods
Podoplanin expression in human synovial tissue from 18 RA patients and nine osteoarthritis (OA) patients was assessed by immunohistochemistry and confirmed by Western blot analysis. The expression was related to markers of synoviocytes and myofibroblasts detected by using confocal immunofluoresence microscopy. Expression of podoplanin, with or without the addition of proinflammatory cytokines and growth factors, in primary human FLS was evaluated by using flow cytometry.
Results
Podoplanin was highly expressed in cadherin-11-positive cells throughout the synovial lining layer in RA. The expression was most pronounced in areas with lining layer hyperplasia and high matrix metalloproteinase 9 expression, where it coincided with upregulation of α-smooth muscle actin (α-sma). The synovium in OA was predominantly podoplanin-negative. Podoplanin was expressed in 50% of cultured primary FLSs, and the expression was increased by interleukin 1β, tumour necrosis factor α and transforming growth factor β receptor 1.
Conclusions
Here we show that podoplanin is highly expressed in FLSs of the invading synovial tissue in RA. The concomitant upregulation of α-sma and podoplanin in a subpopulation of FLSs indicates a myofibroblast phenotype. Proinflammatory mediators increased the podoplanin expression in cultured RA-FLS. We conclude that podoplanin might be involved in the synovial tissue transformation and increased migratory potential of activated FLSs in RA.
doi:10.1186/ar3274
PMCID: PMC3132020  PMID: 21385358
5.  Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice 
RHO family proteins are important for the function of inflammatory cells. They are modified with a 20-carbon geranylgeranyl lipid in a process catalyzed by protein geranylgeranyltransferase type I (GGTase-I). Geranylgeranylation is viewed as essential for the membrane targeting and activity of RHO proteins. Consequently, inhibiting GGTase-I to interfere with RHO protein activity has been proposed as a strategy to treat inflammatory disorders. However, here we show that mice lacking GGTase-I in macrophages develop severe joint inflammation resembling erosive rheumatoid arthritis. The disease was initiated by the GGTase-I–deficient macrophages and was transplantable and reversible in bone marrow transplantation experiments. The cells accumulated high levels of active GTP-bound RAC1, CDC42, and RHOA, and RAC1 remained associated with the plasma membrane. Moreover, GGTase-I deficiency activated p38 and NF-κB and increased the production of proinflammatory cytokines. The results challenge the view that geranylgeranylation is essential for the activity and localization of RHO family proteins and suggest that reduced geranylgeranylation in macrophages can initiate erosive arthritis.
doi:10.1172/JCI43758
PMCID: PMC3026725  PMID: 21266780
6.  Carbamylation-Dependent Activation of T Cells: A Novel Mechanism in the Pathogenesis of Autoimmune Arthritis 
The posttranslational modification of proteins has the potential to generate neoepitopes that may subsequently trigger immune responses. The carbamylation of lysine residues to form homocitrulline may be a key mechanism triggering inflammatory responses. We evaluated the role of carbamylation in triggering immune responses and report a new role for this process in the induction of arthritis. Immunization of mice with homocitrulline-containing peptides induced chemotaxis, T cell activation, and Ab production. The mice also developed erosive arthritis following intra-articular injection of peptides derived from homocitrulline and citrulline. Adoptive transfer of T and B cells from homocitrulline-immunized mice into normal recipients induced arthritis, whereas systemic injection of homocitrulline-specific Abs or intra-articular injection of homocitrulline-Ab/citrulline-peptide mixture did not. Thus, the T cell response to homocitrulline-derived peptides, as well as the subsequent production of anti-homocitrulline Abs, is critical for the induction of autoimmune reactions against citrulline-derived peptides and provides a novel mechanism for the pathogenesis of arthritis.
doi:10.4049/jimmunol.1000075
PMCID: PMC2925534  PMID: 20488785
7.  Epstein–Barr virus in bone marrow of rheumatoid arthritis patients predicts response to rituximab treatment 
Rheumatology (Oxford, England)  2010;49(10):1911-1919.
Objectives. Viruses may contribute to RA. This prompted us to monitor viral load and response to anti-CD20 therapy in RA patients.
Methods. Blood and bone marrow from 35 RA patients were analysed for CMV, EBV, HSV-1, HSV-2, parvovirus B19 and polyomavirus using real-time PCR before and 3 months after rituximab (RTX) treatment and related to the levels of autoantibodies and B-cell depletion. Clinical response to RTX was defined as decrease in the 28-joint disease activity score (DAS-28) >1.3 at 6 months.
Results. Before RTX treatment, EBV was identified in 15 out of 35 patients (EBV-positive group), of which 4 expressed parvovirus. Parvovirus was further detected in eight patients (parvo-positive group). Twelve patients were negative for the analysed viruses. Following RTX, EBV was cleared, whereas parvovirus was unaffected. Eighteen patients were responders, of which 12 were EBV positive. The decrease in the DAS-28 was significantly higher in EBV-positive group compared with parvo-positive group (P = 0.002) and virus-negative patients (P = 0.04). Most of EBV-negative patients that responded to RTX (75%) required retreatment within the following 11 months compared with only 8% of responding EBV-positive patients. A decrease of RF, Ig-producing cells and CD19+ B cells was observed following RTX but did not distinguish between viral infections. However, EBV-infected patients had significantly higher levels of Fas-expressing B cells at baseline as compared with EBV-negative groups.
Conclusions. EBV and parvovirus genomes are frequently found in bone marrow of RA patients. The presence of EBV genome was associated with a better clinical response to RTX. Thus, presence of EBV genome may predict clinical response to RTX.
doi:10.1093/rheumatology/keq159
PMCID: PMC2936947  PMID: 20547657
Rheumatoid arthritis; Biological therapy; B-cell depletion; Viral infection; Epstein–Barr virus
8.  Vaccination response to protein and carbohydrate antigens in patients with rheumatoid arthritis after rituximab treatment 
Arthritis Research & Therapy  2010;12(3):R111.
Introduction
Rheumatoid arthritis (RA) is frequently complicated with infections. The aim of our study was to evaluate vaccination response in patients with RA after B-cell depletion by using rituximab.
Methods
Influenza (Afluria) and pneumococcal polysaccharides (Pneumo23) vaccines were given 6 months after rituximab (post-RTX group, n = 11) or 6 days before rituximab treatment (pre-RTX group; n = 8). RA patients never exposed to RTX composed the control group (n = 10). Vaccine-specific cellular responses were evaluated on day 6 after vaccination, and vaccine-specific humoral responses, on day 21.
Results
On day 6 after vaccination, formation of influenza-specific B cells was lower in post-RTX group as compared with the pre-RTX group and controls (P = 0.04). Polysaccharide-specific B cells were found in 27% to 50%, being equally distributed between the groups. On day 21, the impairment of humoral responses was more pronounced with respect to influenza as compared with the pneumococcal vaccine and affected both IgG and light-chain production. Total absence of influenza-specific IgG production was observed in 55% of the post-RTX group.
Conclusions
RTX compromises cellular and humoral vaccine responses in RA patients. However, repeated RTX treatment or previous anti-tumor necrosis factor (anti-TNF) treatment did not accentuate these defects.
doi:10.1186/ar3047
PMCID: PMC2911904  PMID: 20529331
9.  Mice Chronically Fed High-Fat Diet Have Increased Mortality and Disturbed Immune Response in Sepsis 
PLoS ONE  2009;4(10):e7605.
Background
Sepsis is a potentially deadly disease that often is caused by gram-positive bacteria, in particular Staphylococcus aureus (S. aureus). As there are few effective therapies for sepsis, increased basic knowledge about factors predisposing is needed.
Methodology/Principal Findings
The purpose of this study was to study the effect of Western diet on mortality induced by intravenous S. aureus inoculation and the immune functions before and after bacterial inoculation. Here we show that C57Bl/6 mice on high-fat diet (HFD) for 8 weeks, like genetically obese Ob/Ob mice on low-fat diet (LFD), have increased mortality during S. aureus-induced sepsis compared with LFD-fed C57Bl/6 controls. Bacterial load in the kidneys 5–7 days after inoculation was increased 10-fold in HFD-fed compared with LFD-fed mice. At that time, HFD-fed mice had increased serum levels and fat mRNA expression of the immune suppressing cytokines interleukin-1 receptor antagonist (IL-1Ra) and IL-10 compared with LFD-fed mice. In addition, HFD-fed mice had increased serum levels of the pro-inflammatory IL-1β. Also, HFD-fed mice with and without infection had increased levels of macrophages in fat. The proportion and function of phagocytosing granulocytes, and the production of reactive oxygen species (ROS) by peritoneal lavage cells were decreased in HFD-fed compared with LFD-fed mice.
Conclusions
Our findings imply that chronic HFD disturb several innate immune functions in mice, and impairs the ability to clear S. aureus and survive sepsis.
doi:10.1371/journal.pone.0007605
PMCID: PMC2765728  PMID: 19865485
10.  Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis 
Arthritis Research & Therapy  2009;11(4):R123.
Introduction
In the present study we evaluated changes in the B cell phenotype in peripheral blood and bone marrow (BM) of patients with rheumatoid arthritis (RA) following anti-CD20 treatment using rituximab.
Methods
Blood and BM samples were obtained from 37 patients with RA prior to rituximab treatment. Ten of these patients were resampled 1 month following rituximab, 14 patients after 3 months and the remaining 13 patients were included in the long-term follow up. B cell populations were characterized by CD27/IgD/CD38/CD24 expression.
Results
One and three months following rituximab BM retained up to 30% of B cells while circulation was totally depleted of B cells. Analysis of the remaining BM B cells showed prevalence of immature and/or transitional B cells (CD38++CD24++) and CD27+IgD- memory cells, while IgD+ cells were completely depleted. A significant reduction of CD27+ cells in BM and in circulation was observed long after rituximab treatment (mean 22 months), while levels of naive B cells in BM and in circulation were increased. The levels of rheumatoid factor decline after rituximab treatment but returned to baseline levels at the time of retreatment.
Conclusions
Anti-CD20 treatment achieves a depletion of IgD+ B cells shortly after the treatment. At the long term follow up, a reduction of CD27+ B cells was observed in blood and BM. The prolonged inability to up-regulate CD27 may inhibit the renewal of memory B cells. This reduction of CD27+ B cells does not prevent autoantibody production suggesting that mechanisms regulating the formation of auto reactive clones are not disrupted by rituximab.
doi:10.1186/ar2789
PMCID: PMC2745807  PMID: 19686595
11.  Helicobacter pylori Induces Transendothelial Migration of Activated Memory T Cells  
Infection and Immunity  2005;73(2):761-769.
Helicobacter pylori infection is associated with pronounced infiltration of granulocytes and lymphocytes into the gastric mucosa, resulting in active chronic gastritis that may develop into duodenal ulcer disease or gastric adenocarcinoma. Infiltrating T cells play a major role in the pathology of these diseases, but the signals involved in recruitment of T cells from blood to H. pylori-infected tissues are not well understood. We therefore examined H. pylori-induced T-cell transendothelial migration (TEM). The Transwell system, employing a monolayer of human umbilical vein endothelial cells, was used as a model to study TEM. H. pylori induced a significant T-cell migration, compared to spontaneous migration. CD4+ and CD8+ T cells migrated to the same extent in response to H. pylori, whereas there was significantly larger transmigration of memory T cells compared to naive T cells. Both H. pylori culture filtrate and urease induced migration, and the presence of the H. pylori cag pathogenicity island increased TEM. T-cell TEM was mediated by LFA-1-ICAM-1 interactions in accordance with an increased ICAM-1 expression on the endothelial cells after contact with H. pylori. Migrating T cells had increased expression of activation marker CD69 and chemokine receptors CXCR3, CCR4, and CCR9. Furthermore, T cells migrating in response to H. pylori secreted Th1 but not Th2 cytokines upon stimulation. In conclusion, our data indicate that live H. pylori and its secreted products contribute to T-cell recruitment to the gastric mucosa and that the responding T cells have an activated memory Th1 phenotype.
doi:10.1128/IAI.73.2.761-769.2005
PMCID: PMC546998  PMID: 15664914

Results 1-11 (11)