PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (64)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  The Challenge of Producing Skin Test Antigens with Minimal Resources Suitable for Human Application against a Neglected Tropical Disease; Leprosy 
True incidence of leprosy and its impact on transmission will not be understood until a tool is available to measure pre-symptomatic infection. Diagnosis of leprosy disease is currently based on clinical symptoms, which on average take 3–10 years to manifest. The fact that incidence, as defined by new case detection, equates with prevalence, i.e., registered cases, suggests that the cycle of transmission has not been fully intercepted by implementation of multiple drug therapy. This is supported by a high incidence of childhood leprosy. Epidemiological screening for pre-symptomatic leprosy in large endemic populations is required to facilitate targeted chemoprophylactic interventions. Such a test must be sensitive, specific, simple to administer, cost-effective, and easy to interpret. The intradermal skin test method that measures cell-mediated immunity was explored as the best option. Prior knowledge on skin testing of healthy subjects and leprosy patients with whole or partially fractionated Mycobacterium leprae bacilli, such as Lepromin or the Rees' or Convit' antigens, has established an acceptable safety and potency profile of these antigens. These data, along with immunoreactivity data, laid the foundation for two new leprosy skin test antigens, MLSA-LAM (M. leprae soluble antigen devoid of mycobacterial lipoglycans, primarily lipoarabinomannan) and MLCwA (M. leprae cell wall antigens). In the absence of commercial interest, the challenge was to develop these antigens under current good manufacturing practices in an acceptable local pilot facility and submit an Investigational New Drug to the Food and Drug Administration to allow a first-in-human phase I clinical trial.
Author Summary
Despite reaching the global elimination target for leprosy, the need for a diagnostic tool to detect pre-symptomatic disease remains. Transmission has not been completely intercepted despite over 30 years of extensive curative treatment. With limited resources, two new leprosy skin test antigens, MLSA-LAM and MLCwA, suitable for human application were developed and manufactured in a local pilot plant. Requirements for manufacturing and clinical testing were met and an Investigational New Drug was established with the Food and Drug Administration to test both antigens in a phase I clinical trial for safety in a non-endemic region for leprosy and a phase II clinical trial for safety and efficacy in an endemic region for leprosy.
doi:10.1371/journal.pntd.0002791
PMCID: PMC4038479  PMID: 24874086
2.  Safety and Efficacy Assessment of Two New Leprosy Skin Test Antigens: Randomized Double Blind Clinical Study 
Background
New tools are required for the diagnosis of pre-symptomatic leprosy towards further reduction of disease burden and its associated reactions. To address this need, two new skin test antigens were developed to assess safety and efficacy in human trials.
Methods
A Phase I safety trial was first conducted in a non-endemic region for leprosy (U.S.A.). Healthy non-exposed subjects (n = 10) received three titrated doses (2.5 µg, 1.0 µg and 0.1 µg) of MLSA-LAM (n = 5) or MLCwA (n = 5) and control antigens [Rees MLSA (1.0 µg) and saline]. A randomized double blind Phase II safety and efficacy trial followed in an endemic region for leprosy (Nepal), but involved only the 1.0 µg (high dose) and 0.1 µg (low dose) of each antigen; Tuberculin PPD served as a control antigen. This Phase II safety and efficacy trial consisted of three Stages: Stage A and B studies were an expansion of Phase I involving 10 and 90 subjects respectively, and Stage C was then conducted in two parts (high dose and low dose), each enrolling 80 participants: 20 borderline lepromatous/lepromatous (BL/LL) leprosy patients, 20 borderline tuberculoid/tuberculoid (BT/TT) leprosy patients, 20 household contacts of leprosy patients (HC), and 20 tuberculosis (TB) patients. The primary outcome measure for the skin test was delayed type hypersensitivity induration.
Findings
In the small Phase I safety trial, reactions were primarily against the 2.5 µg dose of both antigens and Rees control antigen, which were then excluded from subsequent studies. In the Phase II, Stage A/B ramped-up safety study, 26% of subjects (13 of 50) showed induration against the high dose of each antigen, and 4% (2 of 50) reacted to the low dose of MLSA-LAM. Phase II, Stage C safety and initial efficacy trial showed that both antigens at the low dose exhibited low sensitivity at 20% and 25% in BT/TT leprosy patients, but high specificity at 100% and 95% compared to TB patients. The high dose of both antigens showed lower specificity (70% and 60%) and sensitivity (10% and 15%). BL/LL leprosy patients were anergic to the leprosy antigens.
Interpretation
MLSA-LAM and MLCwA at both high (1.0 µg) and low (0.1 µg) doses were found to be safe for use in humans without known exposure to leprosy and in target populations. At a sensitivity rate of 20–25% these antigens are not suitable as a skin test for the detection of the early stages of leprosy infection; however, the degree of specificity is impressive given the presence of cross-reactive antigens in these complex native M. leprae preparations.
Trial Registration
ClinicalTrails.gov NCT01920750 (Phase I), NCT00128193 (Phase II)
Author Summary
Clinically useful skin test reagents should be safe and sufficiently sensitive to detect infection prior to physical manifestations of leprosy disease. While in these small scale human studies, leprosy reagents were safe for use in humans, they failed in respect of sensitivity at a rate of 20–25% in the key indicator group, BT/TT leprosy patients. Specificity in terms of leprosy vs. tuberculosis at a rate of 95–100% was surprisingly high in light of the extensive presence of cross-reactive antigens in the complex native M. leprae preparations. These results could justify a further trial at lower dosages.
doi:10.1371/journal.pntd.0002811
PMCID: PMC4038488  PMID: 24874401
3.  Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens 
Chemistry & biology  2009;16(12):1230-1239.
Summary
Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization.
doi:10.1016/j.chembiol.2009.10.014
PMCID: PMC4020808  PMID: 20064433
4.  Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis 
Future microbiology  2013;8(7):10.2217/fmb.13.52.
Most of the newly discovered compounds showing promise for the treatment of TB, notably multidrug-resistant TB, inhibit aspects of Mycobacterium tuberculosis cell envelope metabolism. This review reflects on the evolution of the knowledge that many of the front-line and emerging products inhibit aspects of cell envelope metabolism and in the process are bactericidal not only against actively replicating M. tuberculosis, but contrary to earlier impressions, are effective against latent forms of the disease. While mycolic acid and arabinogalactan synthesis are still primary targets of existing and new drugs, peptidoglycan synthesis, transport mechanisms and the synthesis of the decaprenyl-phosphate carrier lipid all show considerable promise as targets for new products, older drugs and new combinations. The advantages of whole cell- versus target-based screening in the perpetual search for new targets and products to counter multidrug-resistant TB are discussed.
doi:10.2217/fmb.13.52
PMCID: PMC3867987  PMID: 23841633
antibiotic; arabinogalactan; cell envelope; Mycobacterium; mycolic acids; peptidoglycan; tuberculosis
5.  Differences in CD1d protein structure determine species-selective antigenicity of isoglobotrihexosylceramide (iGb3) to invariant natural killer T (iNKT)Cells 
European journal of immunology  2013;43(3):815-825.
Isoglobotrihexosylceramide (iGb3) has been identified as a potent CD1d-presented self-antigen for mouse iNKT cells. The role of iGb3 in humans remains unresolved, however, as there have been conflicting reports about iGb3-dependent human iNKT-cell activation, and humans lack iGb3 synthase, a key enzyme for iGb3 synthesis. Given the importance of human immune responses, we conducted a human-mouse cross-species analysis of iNKT-cell activation by iGb3-CD1d. Here we show that human and mouse iNKT cells were both able to recognise iGb3 presented by mouse CD1d (mCD1d), but not human CD1d (hCD1d), as iGb3-hCD1d was unable to support cognate interactions with the iNKT-cell TCR. The structural basis for this discrepancy was identified as a single amino acid variation between hCD1d and mCD1d, a glycine-to-tryptophan modification within the alpha2-helix that prevents flattening of the iGb3 headgroup upon TCR ligation. Mutation of the human residue, Trp153, to the mouse ortholog, Gly155, therefore allowed iGb3-hCD1d to stimulate human iNKT cells. In conclusion, our data indicate that iGb3 is unlikely to be a major antigen in human iNKT-cell biology.
doi:10.1002/eji.201242952
PMCID: PMC3961145  PMID: 23280365
antigen presentation; CD1d; iNKT; isogloboside 3; species differences
6.  Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography 
New cases of leprosy are still being detected in Colombia after the country declared achievement of the WHO defined ‘elimination’ status. To study the ecology of leprosy in endemic regions, a combination of geographic and molecular tools were applied for a group of 201 multibacillary patients including six multi-case families from eleven departments. The location (latitude and longitude) of patient residences were mapped. Slit skin smears and/or skin biopsies were collected and DNA was extracted. Standard agarose gel electrophoresis following a multiplex PCR-was developed for rapid and inexpensive strain typing of M. leprae based on copy numbers of two VNTR minisatellite loci 27-5 and 12-5. A SNP (C/T) in gyrA (SNP7614) was mapped by introducing a novel PCR-RFLP into an ongoing drug resistance surveillance effort. Multiple genotypes were detected combining the three molecular markers. The two frequent genotypes in Colombia were SNP7614(C)/27-5(5)/12-5(4) [C54] predominantly distributed in the Atlantic departments and SNP7614 (T)/27-5(4)/12-5(5) [T45] associated with the Andean departments. A novel genotype SNP7614 (C)/27-5(6)/12-5(4) [C64] was detected in cities along the Magdalena river which separates the Andean from Atlantic departments; a subset was further characterized showing association with a rare allele of minisatellite 23-3 and the SNP type 1 of M. leprae. The genotypes within intra-family cases were conserved. Overall, this is the first large scale study that utilized simple and rapid assay formats for identification of major strain types and their distribution in Colombia. It provides the framework for further strain type discrimination and geographic information systems as tools for tracing transmission of leprosy.
doi:10.1016/j.meegid.2012.12.015
PMCID: PMC3668693  PMID: 23291420
Leprosy; Mycobacterium leprae; SNP; gyrA; SNP7614; VNTR
7.  Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells 
Nature immunology  2012;14(1):90-99.
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that act as critical regulators of the immune response. To better characterize this population, we profiled iNKT cell gene expression during ontogeny and in peripheral subsets as part of the Immunological Genome Project (ImmGen). High-resolution comparative transcriptional analyses defined developmental and subset-specific iNKT cell gene expression programs. In addition, iNKT cells were found to share an extensive transcriptional program with natural killer (NK) cells, similar in magnitude to that shared with major histocompatibility complex (MHC)-restricted T cells. Strikingly, the NK- iNKT program also operated constitutively in γδT cells and in adaptive T cells following activation. Together, our findings highlight a core effector program regulated distinctly in innate and adaptive lymphocytes.
doi:10.1038/ni.2490
PMCID: PMC3764492  PMID: 23202270
8.  Isolation of a distinct Mycobacterium tuberculosis mannose-capped lipoarabinomannan isoform responsible for recognition by CD1b-restricted T cells 
Glycobiology  2012;22(8):1118-1127.
Mannose-capped lipoarabinomannan (ManLAM) is a complex lipoglycan abundantly present in the Mycobacterium tuberculosis cell envelope. Many biological properties have been ascribed to ManLAM, from directly interacting with the host and participating in the intracellular survival of M. tuberculosis, to triggering innate and adaptive immune responses, including the activation of CD1b-restricted T cells. Due to its structural complexity, ManLAM is considered a heterogeneous population of molecules which may explain its different biological properties. The presence of various modifications such as fatty acids, succinates, lactates, phosphoinositides and methylthioxylose in ManLAM have proven to correlate directly with its biological activity and may potentially be involved in the interactions between CD1b and the T cell population. To further delineate the specific ManLAM epitopes involved in CD1b-restricted T cell recognition, and their potential roles in mediating immune responses in M. tuberculosis infection, we established a method to resolve ManLAM into eight different isoforms based on their different isoelectric values. Our results show that a ManLAM isoform with an isoelectric value of 5.8 was the most potent in stimulating the production of interferon-γ in different CD1b-restricted T-cell lines. Compositional analyses of these isoforms of ManLAM revealed a direct relationship between the overall charge of the ManLAM molecule and its capacity to be presented to T cells via the CD1 compartment.
doi:10.1093/glycob/cws078
PMCID: PMC3382347  PMID: 22534567
CD1b; lipoarabinomannan; lipoglycans; Mycobacterium tuberculosis; T cells
9.  Gene Expression Profile and Immunological Evaluation of Unique Hypothetical Unknown Proteins of Mycobacterium leprae by Using Quantitative Real-Time PCR 
The cell-mediated immunity (CMI)-based in vitro gamma interferon release assay (IGRA) of Mycobacterium leprae-specific antigens has potential as a promising diagnostic means to detect those individuals in the early stages of M. leprae infection. Diagnosis of leprosy is a major obstacle toward ultimate disease control and has been compromised in the past by the lack of specific markers. Comparative bioinformatic analysis among mycobacterial genomes identified potential M. leprae-specific proteins called “hypothetical unknowns.” Due to massive gene decay and the prevalence of pseudogenes, it is unclear whether any of these proteins are expressed or are immunologically relevant. In this study, we performed cDNA-based quantitative real-time PCR to investigate the expression status of 131 putative open reading frames (ORFs) encoding hypothetical unknowns. Twenty-six of the M. leprae-specific antigen candidates showed significant levels of gene expression compared to that of ESAT-6 (ML0049), which is an important T cell antigen of low abundance in M. leprae. Fifteen of 26 selected antigen candidates were expressed and purified in Escherichia coli. The seroreactivity to these proteins of pooled sera from lepromatous leprosy patients and cavitary tuberculosis patients revealed that 9 of 15 recombinant hypothetical unknowns elicited M. leprae-specific immune responses. These nine proteins may be good diagnostic reagents to improve both the sensitivity and specificity of detection of individuals with asymptomatic leprosy.
doi:10.1128/CVI.00419-12
PMCID: PMC3571279  PMID: 23239802
10.  Real-Time PCR and High-Resolution Melt Analysis for Rapid Detection of Mycobacterium leprae Drug Resistance Mutations and Strain Types 
Journal of Clinical Microbiology  2012;50(3):742-753.
Drug resistance surveillance and strain typing of Mycobacterium leprae are necessary to investigate ongoing transmission of leprosy in regions of endemicity. To enable wider implementation of these molecular analyses, novel real-time PCR–high-resolution melt (RT-PCR-HRM) assays without allele-specific primers or probes and post-PCR sample handling were developed. For the detection of mutations within drug resistance-determining regions (DRDRs) of folP1, rpoB, and gyrA, targets for dapsone, rifampin, and fluoroquinolones, real-time PCR-HRM assays were developed. Wild-type and drug-resistant mouse footpad-derived strains that included three folP1, two rpoB, and one gyrA mutation types in a reference panel were tested. RT-PCR-HRM correctly distinguished the wild type from the mutant strains. In addition, RT-PCR-HRM analyses aided in recognizing samples with mixed or minor alleles and also a mislabeled sample. When tested in 121 sequence-characterized clinical strains, HRM identified all the folP1 mutants representing two mutation types, including one not within the reference panel. The false positives (<5%) could be attributed to low DNA concentration or PCR inhibition. A second set of RT-PCR-HRM assays for identification of three previously reported single nucleotide polymorphisms (SNPs) that have been used for strain typing were developed and validated in 22 reference and 25 clinical strains. Real-time PCR-HRM is a sensitive, simple, rapid, and high-throughput tool for routine screening known DRDR mutants in new and relapsed cases, SNP typing, and detection of minor mutant alleles in the wild-type background at lower costs than current methods and with the potential for quality control in leprosy investigations.
doi:10.1128/JCM.05183-11
PMCID: PMC3295127  PMID: 22170923
11.  Invariant natural killer T cells recognize lipid self-antigen induced by microbial danger signals 
Nature Immunology  2011;12(12):1202-1211.
Invariant natural killer T cells (iNKT cells) play a prominent role during infection and other inflammatory processes, and these cells can be activated through their T cell receptors by microbial lipid antigens. However, increasing evidence shows that they are also activated in situations where no foreign lipid antigens are present, suggesting a role for lipid self-antigen. We now demonstrate that an abundant endogenous lipid, β-D-glucopyranosylceramide (β-GlcCer), is a potent iNKT cell self-antigen in mouse and human, and that its activity depends on N-acyl chain composition. Furthermore, β-GlcCer accumulates during infection and in response to Toll-like receptor agonists, contributing to iNKT cell activation. Thus, we propose that recognition of β-GlcCer by the invariant TCR translates innate danger signals into iNKT cell activation.
doi:10.1038/ni.2143
PMCID: PMC3242449  PMID: 22037601
12.  Transmission of Dapsone-Resistant Leprosy Detected by Molecular Epidemiological Approaches▿ 
Antimicrobial Agents and Chemotherapy  2011;55(11):5384-5387.
Drug resistance surveillance identified six untreated leprosy patients in the Philippines with Mycobacterium leprae folP1 mutations which confer dapsone resistance. Five patients share a village of residence; four who carried the mutation, Thr53Val, were also linked by M. leprae variable-number tandem repeat (VNTR) strain types. In India, folP1 mutations were detected in two relapse patients with a history of dapsone treatment. Mutations were not found in the rifampin target gene rpoB. These findings indicate that dapsone resistance is being transmitted.
doi:10.1128/AAC.05236-11
PMCID: PMC3195063  PMID: 21859943
13.  Pathogen-Specific Epitopes as Epidemiological Tools for Defining the Magnitude of Mycobacterium leprae Transmission in Areas Endemic for Leprosy 
During recent years, comparative genomic analysis has allowed the identification of Mycobacterium leprae-specific genes with potential application for the diagnosis of leprosy. In a previous study, 58 synthetic peptides derived from these sequences were tested for their ability to induce production of IFN-γ in PBMC from endemic controls (EC) with unknown exposure to M. leprae, household contacts of leprosy patients and patients, indicating the potential of these synthetic peptides for the diagnosis of sub- or preclinical forms of leprosy. In the present study, the patterns of IFN-γ release of the individuals exposed or non-exposed to M. leprae were compared using an Artificial Neural Network algorithm, and the most promising M. leprae peptides for the identification of exposed people were selected. This subset of M. leprae-specific peptides allowed the differentiation of groups of individuals from sites hyperendemic for leprosy versus those from areas with lower level detection rates. A progressive reduction in the IFN-γ levels in response to the peptides was seen when contacts of multibacillary (MB) patients were compared to other less exposed groups, suggesting a down modulation of IFN-γ production with an increase in bacillary load or exposure to M. leprae. The data generated indicate that an IFN-γ assay based on these peptides applied individually or as a pool can be used as a new tool for predicting the magnitude of M. leprae transmission in a given population.
Author Summary
Despite the efforts to treat registered leprosy patients, the number of new cases reported globally remains stable and high (about 200,000/year). As the treatment of multibacillary leprosy patients, the major recognized source for new infections, did not allow the expected reduction in new leprosy cases, additional sources must be considered. Following exposure to M. leprae infection, the evolution to active disease is estimated to take from 2 to 10 years, and it is conceivable that some of these asymptomatic individuals could be a yet unrecognized source of infection. Previously, the use of computational tools allowed us to select M. leprae-specific genes or gene regions, and derive M. leprae-specific synthetic peptides from the M. leprae genome. Ex vivo stimulation of the blood leukocytes with a subset of these peptides induced IFN-γ production that allowed the differentiation of individuals exposed to M. leprae from unexposed ones. Individuals with no known history of exposure to M. leprae, but living in an area with high frequency of leprosy cases had high-level positive responses to the peptides. This last observation raised the possibility of using this test as a tool for evaluating the level of transmission of M. leprae infection in areas of interest.
doi:10.1371/journal.pntd.0001616
PMCID: PMC3335884  PMID: 22545169
14.  Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis 
The reemergence of tuberculosis in its present-day manifectations – single, multiple and extensive drug resistant forms and as HIV-TB coinfections – has resulted in renewed research on fundamental questions such as the nature of the organism itself, Mycobacterium tuberculosis, the molecular basis of its pathogenesis, definition of the immunological response in animal models and humans, and development of new intervention strategies such as vaccines and drugs. Foremost among these developments has been the precise chemical definition of the complex and distinctive cell wall of M. tuberculosis, elucidation of the relevant pathways and underlying genetics responsible for the synthesis of the hallmark moities of the tubercle bacillus such as the mycolic acid-arabinogalactan-peptidoglycan complex, the phthiocerol- and trehalose-containing effector lipids, the phosphatidylinositol-containing mannosides, lipomannosides and lipoarabinomannosides, major immunomodulators, and others. In this review, the laboratory personnel that have been the focal point of some to these developments review recent progress towards a comprehensive understanding of the basic physiology and functions of the cell wall of M. tuberculosis.
doi:10.1016/S0065-2164(09)69002-X
PMCID: PMC3066434  PMID: 19729090
15.  Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF, a potential drug target 
Chemistry & biology  2010;17(2):117-122.
SUMMARY
Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Since there is no ortholog of IspF in human cells IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening.
doi:10.1016/j.chembiol.2010.01.013
PMCID: PMC2837070  PMID: 20189102
16.  AftD, a novel essential arabinofuranosyltransferase from mycobacteria 
Glycobiology  2009;19(11):1235-1247.
Arabinogalactan (AG) and lipoarabinomannan (LAM) are the two major cell wall (lipo)polysaccharides of mycobacteria. They share arabinan chains made of linear segments of α-1,5-linked d-Araf residues with some α-1,3-branching, the biosynthesis of which offers opportunities for new chemotherapeutics. In search of the missing arabinofuranosyltransferases (AraTs) responsible for the formation of the arabinan domains of AG and LAM in Mycobacterium tuberculosis, we identified Rv0236c (AftD) as a putative membrane-associated polyprenyl-dependent glycosyltransferase. AftD is 1400 amino acid-long, making it the largest predicted glycosyltransferase of its class in the M. tuberculosis genome. Assays using cell-free extracts from recombinant Mycobacterium smegmatis and Corynebacterium glutamicum strains expressing different levels of aftD indicated that this gene encodes a functional AraT with α-1,3-branching activity on linear α-1,5-linked neoglycolipid acceptors in vitro. The disruption of aftD in M. smegmatis resulted in cell death and a decrease in its activity caused defects in cell division, reduced growth, alteration of colonial morphology, and accumulation of trehalose dimycolates in the cell envelope. Overexpression of aftD in M. smegmatis, in contrast, induced the accumulation of two arabinosylated compounds with carbohydrate backbones reminiscent of that of LAM and a degree of arabinosylation dependent on aftD expression levels. Altogether, our results thus indicate that AftD is an essential AraT involved in the synthesis of the arabinan domain of major mycobacterial cell envelope (lipo)polysaccharides.
doi:10.1093/glycob/cwp116
PMCID: PMC2757576  PMID: 19654261
arabinogalactan; arabinosyltransferase; lipoarabinomannan; Mycobacterium; tuberculosis
17.  Identification of a Polyprenylphosphomannosyl Synthase Involved in the Synthesis of Mycobacterial Mannosides▿ † 
Journal of Bacteriology  2009;191(21):6769-6772.
We report on the identification of a glycosyltransferase (GT) from Mycobacterium tuberculosis H37Rv, Rv3779, of the membranous GT-C superfamily responsible for the direct synthesis of polyprenyl-phospho-mannopyranose and thus indirectly for lipoarabinomannan, lipomannan, and the higher-order phosphatidyl-myo-inositol mannosides.
doi:10.1128/JB.00431-09
PMCID: PMC2795309  PMID: 19717608
18.  Defining mycobacteria: Shared and specific genome features for different lifestyles 
Indian Journal of Microbiology  2009;49(1):11-47.
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of ‘mycobacterial’ gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific ‘virulence’ factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
doi:10.1007/s12088-009-0006-0
PMCID: PMC3450044  PMID: 23100749
Genomics; Evolution; Mycobacteria; Virulence; COGs
19.  Population-Based Molecular Epidemiology of Leprosy in Cebu, Philippines ▿  
Journal of Clinical Microbiology  2009;47(9):2844-2854.
To address the persisting problem of leprosy in Cebu, Philippines, we compiled a database of more than 200 patients who attend an established referral skin clinic. We described the patient characteristics in conventional demographic parameters and also applied multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) and single nucleotide polymorphism (SNP) typing for Mycobacterium leprae in biopsied skin lesion samples. These combined approaches revealed that transmission is ongoing, with the affected including the young Cebuano population under 40 years of age in both crowded cities and rural areas of the island. The emergence of multicase families (MCF) is indicative of infection unconstrained by standard care measures. For the SNPs, we designed a low-cost PCR-restriction fragment length polymorphism typing method. MLVA in M. leprae was highly discriminatory in this population yet could retain broad groups, as defined by the more stable SNPs, implying temporal marker stability suitable for interpreting population structures and evolution. The majority of isolates belong to an Asian lineage (SNP type 1), and the rest belong to a putative postcolonial lineage (SNP type 3). Specific alleles at two VNTR loci, (GGT)5 and 21-3, were highly associated with SNP type 3 in this population. MLVA identified M. leprae genotype associations for patients with known epidemiological links such as in MCFs and in some villages. These methods provide a molecular database and a rational framework for targeted approaches to search and confirm leprosy transmission in various scenarios.
doi:10.1128/JCM.02021-08
PMCID: PMC2738081  PMID: 19571027
20.  The Mycobacterium tuberculosis MEP (2C-methyl-D-erythritol 4-phosphate) pathway as a new drug target 
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensive drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of Mycobacterium tuberculosis has drawn attention; it is one of several pathways vital for M. tuberculosis viability and the human host lacks homologous enzymes. Thus, the MEP pathway promises bacterium-specific drug targets and the potential for identification of lead compounds unencumbered by target-based toxicity. Indeed, fosmidomycin is now known to inhibit the second step in the MEP pathway. This review describes the cardinal features of the main enzymes of the MEP pathway in M. tuberculosis and how these can be manipulated in high throughput screening campaigns in the search for new anti-infectives against TB.
doi:10.1016/j.tube.2008.07.004
PMCID: PMC2646905  PMID: 18793870
Tuberculosis; 2C-methyl-D-erythritol 4-phosphate pathway; high throughput screening campaigns; anti-infectives
21.  IFNγ Response to Mycobacterium tuberculosis, Risk of Infection and Disease in Household Contacts of Tuberculosis Patients in Colombia 
PLoS ONE  2009;4(12):e8257.
Objectives
Household contacts (HHCs) of pulmonary tuberculosis patients are at high risk of Mycobacterium tuberculosis infection and early disease development. Identification of individuals at risk of tuberculosis disease is a desirable goal for tuberculosis control. Interferon-gamma release assays (IGRAs) using specific M. tuberculosis antigens provide an alternative to tuberculin skin testing (TST) for infection detection. Additionally, the levels of IFNγ produced in response to these antigens may have prognostic value. We estimated the prevalence of M. tuberculosis infection by IGRA and TST in HHCs and their source population (SP), and assessed whether IFNγ levels in HHCs correlate with tuberculosis development.
Methods
A cohort of 2060 HHCs was followed for 2–3 years after exposure to a tuberculosis case. Besides TST, IFNγ responses to mycobacterial antigens: CFP, CFP-10, HspX and Ag85A were assessed in 7-days whole blood cultures and compared to 766 individuals from the SP in Medellín, Colombia. Isoniazid prophylaxis was not offered to child contacts because Colombian tuberculosis regulations consider it only in children under 5 years, TST positive without BCG vaccination.
Results
Using TST 65.9% of HHCs and 42.7% subjects from the SP were positive (OR 2.60, p<0.0001). IFNγ response to CFP-10, a biomarker of M. tuberculosis infection, tested positive in 66.3% HHCs and 24.3% from the SP (OR = 6.07, p<0.0001). Tuberculosis incidence rate was 7.0/1000 person years. Children <5 years accounted for 21.6% of incident cases. No significant difference was found between positive and negative IFNγ responders to CFP-10 (HR 1.82 95% CI 0.79–4.20 p = 0.16). However, a significant trend for tuberculosis development amongst high HHC IFNγ producers was observed (trend Log rank p = 0.007).
Discussion
CFP-10-induced IFNγ production is useful to establish tuberculosis infection prevalence amongst HHC and identify those at highest risk of disease. The high tuberculosis incidence amongst children supports administration of chemoprohylaxis to child contacts regardless of BCG vaccination.
doi:10.1371/journal.pone.0008257
PMCID: PMC2788133  PMID: 20011589
22.  Rapid Variable-Number Tandem-Repeat Genotyping for Mycobacterium leprae Clinical Specimens▿  
Journal of Clinical Microbiology  2009;47(6):1757-1766.
Mycobacterium leprae is the noncultivable pathogen of leprosy. Since the genome sequence of an isolate of M. leprae has become available, multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) has been explored as a tool for strain typing and identification of chains of transmission of leprosy. In order to discover VNTRs and develop methods transferable to clinical samples, MLVA was applied to a global collection of M. leprae isolates derived from leprosy patients and propagated in armadillo hosts. PCR amplification, agarose gel electrophoresis, and sequencing methods were applied to DNA extracts from these infected armadillo tissues (n = 21). We identified polymorphisms in 15 out of 25 short-tandem-repeat (STR) loci previously selected by in silico analyses of the M. leprae genome. We then developed multiplex PCR for amplification of these 15 loci in four separate PCRs suitable for fluorescent fragment length analysis and demonstrated STR profiles highly concordant with those from the sequencing methods. Subsequently, we extended this method to DNA extracts from human clinical specimens, such as skin biopsy specimens (n = 30). With these techniques, mapping of multiple loci and differentiation of genotypes have been possible using total DNA extracts from limited amounts of clinical samples at a reduced cost and with less time. These practical methods are therefore available and applicable to answer focused epidemiological questions and to allow monitoring of the transmission of M. leprae in different countries where leprosy is endemic.
doi:10.1128/JCM.02019-08
PMCID: PMC2691099  PMID: 19386839
23.  Preliminary crystallographic analysis of GpgS, a key glucosyltransferase involved in methylglucose lipopolysaccharide biosynthesis in Mycobacterium tuberculosis  
Glucosyl-3-phosphoglycerate synthase (GpgS) is a key enzyme that catalyses the first glucosylation step in methylglucose lipopolysaccharide biosynthesis in Mycobacterium spp. Here, the crystallization and preliminary crystallographic analysis of GpgS from M. tuberculosis and of its complex with UDP are reported.
Glucosyl-3-phosphoglycerate synthase (GpgS) is a key enzyme that catalyses the first glucosylation step in methylglucose lipopolysaccharide biosynthesis in mycobacteria. These important molecules are believed to be involved in the regulation of fatty-acid and mycolic acid synthesis. The enzyme belongs to the recently defined GT81 family of retaining glycosyltransferases (CAZy, Carbohydrate-Active Enzymes Database; see http://www.cazy.org). Here, the purification, crystallization and preliminary crystallographic analysis are reported of GpgS from Mycobacterium tuberculosis and of its complex with UDP. GpgS crystals belonged to space group I4, with unit-cell parameters a = 98.85, b = 98.85, c = 127.64 Å, and diffracted to 2.6 Å resolution. GpgS–UDP complex crystals belonged to space group I4, with unit-cell parameters a = 98.32, b = 98.32, c = 127.96 Å, and diffracted to 3.0 Å resolution.
doi:10.1107/S1744309108032892
PMCID: PMC2593697  PMID: 19052364
glycosyltransferases; methylglucose lipopolysaccharides; Mycobacterium tuberculosis
24.  Preliminary crystallographic analysis of GpgS, a key glucosyltransferase involved in methylglucose lipopolysaccharides biosynthesis in Mycobacterium tuberculosis 
Synopsis Glucosyl-3-phosphoglycerate synthase (GpgS) is a key enzyme that catalyses the first glucosylation step in methylglucose lipopolysaccharides (MGLP) biosynthesis in Mycobacterium spp. Here we report the crystallization and preliminary crystallographic analysis of GpgS from Mycobacterium tuberculosis and its complex with UDP at 2.6 Å and 3.0 Å resolution, respectively.
Glucosyl-3-phosphoglycerate synthase (GpgS) is a key enzyme that catalyses the first glucosylation step in methylglucose lipopolysaccharides (MGLP) biosynthesis in mycobacteria. These important molecules are believed to be involved in the regulation of fatty acid and mycolic acid synthesis. The enzyme belongs to the recently defined GT81 family of retaining glycosyltransferases (CAZy, Carbohydrate-Active enZymes data base; see www.cazy.org). Here we report the purification, crystallization and preliminary crystallographic analysis of GpgS from Mycobacterium tuberculosis and its complex with UDP. GpgS crystals belong to space group I4, with unit-cell parameters a = 98.85, b = 98.85, c= 127.64 Å, and diffract to 2.6 Å resolution. GpgS-UDP complex crystals belong to space group I4 with unit-cell parameters a= 98.32, b= 98.32, c= 127.96 Å, and diffract to 3.0 Å resolution.
doi:10.1107/S1744309108032892
PMCID: PMC2593697  PMID: 19052364
glycosyltransferase; methylglucose lipopolysaccharides; Mycobacterium; X ray structure
25.  From Genome-Based In Silico Predictions to Ex Vivo Verification of Leprosy Diagnosis▿ † 
The detection of hundreds of thousands of new cases of leprosy every year suggests that transmission of Mycobacterium leprae infection still continues. Unfortunately, tools for identification of asymptomatic disease and/or early-stage M. leprae infection (likely sources of transmission) are lacking. The recent identification of M. leprae-unique genes has allowed the analysis of human T-cell responses to novel M. leprae antigens. Antigens with the most-promising diagnostic potential were tested for their ability to induce cytokine secretion by using peripheral blood mononuclear cells from leprosy patients and controls in five different areas where leprosy is endemic; 246 individuals from Brazil, Nepal, Bangladesh, Pakistan, and Ethiopia were analyzed for gamma interferon responses to five recombinant proteins (ML1989, ML1990, ML2283, ML2346, and ML2567) and 22 synthetic peptides. Of these, the M. leprae-unique protein ML1989 was the most frequently recognized and ML2283 the most specific for M. leprae infection/exposure, as only a limited number of tuberculosis patients responded to this antigen. However, all proteins were recognized by a significant number of controls in areas of endemicity. T-cell responses correlated with in vitro response to M. leprae, suggesting that healthy controls in areas where leprosy is endemic are exposed to M. leprae. Importantly, 50% of the healthy household contacts and 59% of the controls in areas of endemicity had no detectable immunoglobulin M antibodies to M. leprae-specific PGL-I but responded in T-cell assays to ≥1 M. leprae protein. T-cell responses specific for leprosy patients and healthy household contacts were observed for ML2283- and ML0126-derived peptides, indicating that M. leprae peptides hold potential as diagnostic tools. Future work should concentrate on the development of a sensitive and field-friendly assay and identification of additional peptides and proteins that can induce M. leprae-specific T-cell responses.
doi:10.1128/CVI.00414-08
PMCID: PMC2650876  PMID: 19176694

Results 1-25 (64)