Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Putting Temperature and Oxygen Thresholds of Marine Animals in Context of Environmental Change: A Regional Perspective for the Scotian Shelf and Gulf of St. Lawrence 
PLoS ONE  2016;11(12):e0167411.
We conducted a literature review of reported temperature, salinity, pH, depth and oxygen preferences and thresholds of important marine species found in the Gulf of St. Lawrence and Scotian Shelf region. We classified 54 identified fishes and macroinvertebrates as important either because they support a commercial fishery, have threatened or at risk status, or meet one of the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, or predators or prey of the above species. The compiled data allow an assessment of species-level impacts including physiological stress and mortality given predictions of future ocean physical and biogeochemical conditions. If an observed, multi-decadal oxygen trend on the central Scotian Shelf continues, a number of species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen in the coming half-century. Projected regional trends and natural variability are both large, and natural variability will act to alternately amplify and dampen anthropogenic changes. When estimates of variability are included with the trend, species encounter unfavourable oxygen conditions decades sooner. Finally, temperature and oxygen thresholds of adult Atlantic wolffish (Anarhichas lupus) and adult Atlantic cod (Gadus morhua) are assessed in the context of a potential future scenario derived from high-resolution ocean models for the central Scotian Shelf.
PMCID: PMC5172530  PMID: 27997536
2.  A Pan-HIV Strategy for Complete Genome Sequencing 
Journal of Clinical Microbiology  2016;54(4):868-882.
Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance.
PMCID: PMC4809961  PMID: 26699702
3.  Discovery of a Novel Human Pegivirus in Blood Associated with Hepatitis C Virus Co-Infection 
PLoS Pathogens  2015;11(12):e1005325.
Hepatitis C virus (HCV) and human pegivirus (HPgV), formerly GBV-C, are the only known human viruses in the Hepacivirus and Pegivirus genera, respectively, of the family Flaviviridae. We present the discovery of a second pegivirus, provisionally designated human pegivirus 2 (HPgV-2), by next-generation sequencing of plasma from an HCV-infected patient with multiple bloodborne exposures who died from sepsis of unknown etiology. HPgV-2 is highly divergent, situated on a deep phylogenetic branch in a clade that includes rodent and bat pegiviruses, with which it shares <32% amino acid identity. Molecular and serological tools were developed and validated for high-throughput screening of plasma samples, and a panel of 3 independent serological markers strongly correlated antibody responses with viral RNA positivity (99.9% negative predictive value). Discovery of 11 additional RNA-positive samples from a total of 2440 screened (0.45%) revealed 93–94% nucleotide identity between HPgV-2 strains. All 12 HPgV-2 RNA-positive cases were identified in individuals also testing positive for HCV RNA (12 of 983; 1.22%), including 2 samples co-infected with HIV, but HPgV-2 RNA was not detected in non-HCV-infected individuals (p<0.0001), including those singly infected by HIV (p = 0.0075) or HBV (p = 0.0077), nor in volunteer blood donors (p = 0.0082). Nine of the 12 (75%) HPgV-2 RNA positive samples were reactive for antibodies to viral serologic markers, whereas only 28 of 2,429 (1.15%) HPgV-2 RNA negative samples were seropositive. Longitudinal sampling in two individuals revealed that active HPgV-2 infection can persist in blood for at least 7 weeks, despite the presence of virus-specific antibodies. One individual harboring both HPgV-2 and HCV RNA was found to be seronegative for both viruses, suggesting a high likelihood of simultaneous acquisition of HCV and HPgV-2 infection from an acute co-transmission event. Taken together, our results indicate that HPgV-2 is a novel bloodborne infectious virus of humans and likely transmitted via the parenteral route.
Author Summary
To date, only one human hepacivirus (HCV) and one human pegivirus (HPgV-1/GBV-C) in the family Flaviviridae are known to exist. Using unbiased metagenomic next-generation sequencing, we discovered and assembled the genome of a novel pegivirus from plasma corresponding to an HCV-infected patient who died from unknown sepsis. This virus, provisionally named human pegivirus 2 (HPgV-2), is highly divergent, sharing <32% amino acid identity with its nearest relatives, a bat and rodent pegivirus. Identification and sequencing of 11 additional HPgV-2 viruses, revealing 93–94% identity between strains, as well as documented antibody responses using multiple markers, confirm that HPgV-2 is a bona fide novel infectious virus of humans. Several lines of evidence, including (1) a documented history of multiple bloodborne exposures in the index patient, (2) parallel detection of HPgV-2 and HCV RNA in an individual during the "window period" between infection and the appearance of detectable antibody, and (3) a tight observed association between HPgV-2 and HCV co-infection, suggest that HPgV-2 is an infectious agent capable of bloodborne transmission.
PMCID: PMC4676677  PMID: 26658760
4.  Utility of Metagenomic Next-Generation Sequencing for Characterization of HIV and Human Pegivirus Diversity 
PLoS ONE  2015;10(11):e0141723.
Given the dynamic changes in HIV-1 complexity and diversity, next-generation sequencing (NGS) has the potential to revolutionize strategies for effective HIV global surveillance. In this study, we explore the utility of metagenomic NGS to characterize divergent strains of HIV-1 and to simultaneously screen for other co-infecting viruses. Thirty-five HIV-1-infected Cameroonian blood donor specimens with viral loads of >4.4 log10 copies/ml were selected to include a diverse representation of group M strains. Random-primed NGS libraries, prepared from plasma specimens, resulted in greater than 90% genome coverage for 88% of specimens. Correct subtype designations based on NGS were concordant with sub-region PCR data in 31 of 35 (89%) cases. Complete genomes were assembled for 25 strains, including circulating recombinant forms with relatively limited data available (7 CRF11_cpx, 2 CRF13_cpx, 1 CRF18_cpx, and 1 CRF37_cpx), as well as 9 unique recombinant forms. HPgV (formerly designated GBV-C) co-infection was detected in 9 of 35 (25%) specimens, of which eight specimens yielded complete genomes. The recovered HPgV genomes formed a diverse cluster with genotype 1 sequences previously reported from Ghana, Uganda, and Japan. The extensive genome coverage obtained by NGS improved accuracy and confidence in phylogenetic classification of the HIV-1 strains present in the study population relative to conventional sub-region PCR. In addition, these data demonstrate the potential for metagenomic analysis to be used for routine characterization of HIV-1 and identification of other viral co-infections.
PMCID: PMC4658132  PMID: 26599538
5.  Sequencing and Phylogenetic Analysis of Near Full-Length HIV-1 Subtypes A, B, G and Unique Recombinant AC and AD Viral Strains Identified in South Africa 
By the end of 2012, more than 6.1 million people were infected with HIV-1 in South Africa. Subtype C was responsible for the majority of these infections and more than 300 near full-length genomes (NFLGs) have been published. Currently very few non-subtype C isolates have been identified and characterized within the country, particularly full genome non-C isolates. Seven patients from the Tygerberg Virology (TV) cohort were previously identified as possible non-C subtypes and were selected for further analyses. RNA was isolated from five individuals (TV047, TV096, TV101, TV218, and TV546) and DNA from TV016 and TV1057. The NFLGs of these samples were amplified in overlapping fragments and sequenced. Online subtyping tools REGA version 3 and jpHMM were used to screen for subtypes and recombinants. Maximum likelihood (ML) phylogenetic analysis (phyML) was used to infer subtypes and SimPlot was used to confirm possible intersubtype recombinants. We identified three subtype B (TV016, TV047, and TV1057) isolates, one subtype A1 (TV096), one subtype G (TV546), one unique AD (TV101), and one unique AC (TV218) recombinant form. This is the first NFLG of subtype G that has been described in South Africa. The subtype B sequences described also increased the NFLG subtype B sequences in Africa from three to six. There is a need for more NFLG sequences, as partial HIV-1 sequences may underrepresent viral recombinant forms. It is also necessary to continue monitoring the evolution and spread of HIV-1 in South Africa, because understanding viral diversity may play an important role in HIV-1 prevention strategies.
PMCID: PMC4378615  PMID: 25492033
6.  Early HLA-B*57-Restricted CD8+ T Lymphocyte Responses Predict HIV-1 Disease Progression 
Journal of Virology  2012;86(19):10505-10516.
Although HLA-B*57 (B57) is associated with slow progression to disease following HIV-1 infection, B57 heterozygotes display a wide spectrum of outcomes, including rapid progression, viremic slow progression, and elite control. Efforts to identify differences between B57-positive (B57+) slow progressors and B57+ rapid progressors have largely focused on cytotoxic T lymphocyte (CTL) phenotypes and specificities during chronic stages of infection. Although CTL responses in the early months of infection are likely to be the most important for the long-term rate of HIV-1 disease progression, few data on the early CTL responses of eventual slow progressors have been available. Utilizing the Multicenter AIDS Cohort Study (MACS), we retrospectively examined the early HIV-1-specific CTL responses of 14 B57+ individuals whose time to development of disease ranged from 3.5 years to longer than 25 years after infection. In general, a greater breadth of targeting of epitopes from structural proteins, especially Gag, as well as of highly conserved epitopes from any HIV-1 protein, correlated with longer times until disease. The single elite controller in the cohort was an outlier on several correlations of CTL targeting and time until disease, consistent with reports that elite control is typically not achieved solely by protective HLA-mediated CTLs. When targeting of individual epitopes was analyzed, we found that early CTL responses to the IW9 (ISPRTLNAW) epitope of Gag, while generally subdominant, correlated with delayed progression to disease. This is the first study to identify early CTL responses to IW9 as a correlate of protection in persons with HLA-B*57.
PMCID: PMC3457253  PMID: 22811521
7.  HIV Testing in a High-Incidence Population: Is Antibody Testing Alone Good Enough? 
The Centers for Disease Control and Prevention recently recommended the expansion of human immunodeficiency virus (HIV) antibody testing. However, antibody tests have longer “window periods” after HIV acquisition than do nucleic acid amplification tests (NAATs).
Public Health–Seattle & King County offered HIV antibody testing to men who have sex with men (MSM) using the OraQuick Advance Rapid HIV-1/2 Antibody Test (OraQuick; OraSure Technologies) on oral fluid or finger-stick blood specimens or using a first- or second-generation enzyme immunoassay. The enzyme immunoassay was also used to confirm reactive rapid test results and to screen specimens from OraQuick-negative MSM prior to pooling for HIV NAAT. Serum specimens obtained from subsets of HIV-infected persons were retrospectively evaluated by use of other HIV tests, including a fourth-generation antigen-antibody combination assay.
From September 2003 through June 2008, a total of 328 (2.3%) of 14,005 specimens were HIV antibody positive, and 36 (0.3%) of 13,677 antibody-negative specimens were NAAT positive (indicating acute HIV infection). Among 6811 specimens obtained from MSM who were initially screened by rapid testing, OraQuick detected only 153 (91%) of 169 antibody-positive MSM and 80% of the 192 HIV-infected MSM detected by the HIV NAAT program. HIV was detected in serum samples obtained from 15 of 16 MSM with acute HIV infection that were retrospectively tested using the antigen-antibody combination assay.
OraQuick may be less sensitive than enzyme immunoassays during early HIV infection. NAAT should be integrated into HIV testing programs that serve populations that undergo frequent testing and that have high rates of HIV acquisition, particularly if rapid HIV antibody testing is employed. Antigen-antibody combination assays may be a reasonably sensitive alternative to HIV NAAT.
PMCID: PMC3361648  PMID: 19538088
8.  Confirmation of Putative HIV-1 Group P in Cameroon▿  
Journal of Virology  2010;85(3):1403-1407.
We report the second human immunodeficiency virus (HIV) belonging to the new HIV type 1 (HIV-1) group P lineage that is closely related to the simian immunodeficiency virus found in gorillas. This virus was identified in an HIV-seropositive male hospital patient in Cameroon, confirming that the group P virus is circulating in humans. Results from screening 1,736 HIV-seropositive specimens collected in Cameroon indicate that HIV-1 group P infections are rare, accounting for only 0.06% of HIV infections. Despite its rarity, group P shows evidence of adaptation to humans.
PMCID: PMC3020498  PMID: 21084486
9.  Performance of the Celera Diagnostics ViroSeq HIV-1 Genotyping System for Sequence-Based Analysis of Diverse Human Immunodeficiency Virus Type 1 Strains 
Journal of Clinical Microbiology  2004;42(6):2711-2717.
The Celera Diagnostics ViroSeq HIV-1 Genotyping System is a Food and Drug Administration-cleared, integrated system for sequence-based analysis of drug resistance mutations in subtype B human immunodeficiency virus type 1 (HIV-1) protease and reverse transcriptase (RT). We evaluated the performance of this system for the analysis of diverse HIV-1 strains. Plasma samples were obtained from 126 individuals from Uganda, Cameroon, South Africa, Argentina, Brazil, and Thailand with viral loads ranging from 2.92 to >6.0 log10 copies/ml. HIV-1 genotyping was performed with the ViroSeq system. HIV-1 subtyping was performed by using phylogenetic methods. PCR products suitable for sequencing were obtained for 125 (99%) of the 126 samples. Genotypes including protease (amino acids 1 to 99) and RT (amino acids 1 to 321) were obtained for 124 (98%) of the samples. Full bidirectional sequence data were obtained for 95 of those samples. The sequences were categorized into the following subtypes: A1/A2 (16 samples), B (12 samples), C (13 samples), D (11 samples), CRF01_AE (9 samples), F/F2 (9 samples), G (7 samples), CRF02_AG (32 samples), H (1 sample), and intersubtype recombinant (14 samples). The performances of the individual sequencing primers were examined. Genotyping of duplicate samples in a second laboratory was successful for 124 of the 126 samples. The identity level for the sequence data from two laboratories ranged from 98 to 100% (median, 99.8%). The ViroSeq system performs well for the analysis of plasma samples with diverse non-B subtypes. The availability of this genotyping system should facilitate studies of HIV-1 drug resistance in non-subtype B strains of HIV-1.
PMCID: PMC427844  PMID: 15184457
10.  Rapid Assay for Simultaneous Detection and Differentiation of Immunoglobulin G Antibodies to Human Immunodeficiency Virus Type 1 (HIV-1) Group M, HIV-1 Group O, and HIV-2 
Journal of Clinical Microbiology  1998;36(12):3657-3661.
A rapid immunodiagnostic test that detects and discriminates human immunodeficiency virus (HIV) infections on the basis of viral type, HIV type 1 (HIV-1) group M, HIV-1 group O, or HIV-2, was developed. The rapid assay for the detection of HIV (HIV rapid assay) was designed as an instrument-free chromatographic immunoassay that detects immunoglobulin G (IgG) antibodies to HIV. To assess the performance of the HIV rapid assay, 470 HIV-positive plasma samples were tested by PCR and/or Western blotting to confirm the genotype of the infecting virus. These samples were infected with strains that represented a wide variety of HIV strains including HIV-1 group M (subtypes A through G), HIV-1 group O, and HIV-2 (subtypes A and B). The results showed that the HIV genotype identity established by the rapid assay reliably (469 of 470 samples) correlates with the HIV genotype identity established by PCR or Western blotting. A total of 879 plasma samples were tested for IgG to HIV by a licensed enzyme immunoassay (EIA) (470 HIV-positive samples and 409 HIV-negative samples). When they were tested by the rapid assay, 469 samples were positive and 410 were negative (99.88% agreement). Twelve seroconversion panels were tested by both the rapid assay and a licensed EIA. For nine panels identical results were obtained by the two assays. For the remaining three panels, the rapid assay was positive one bleed later in comparison to the bleed at which the EIA was positive. One hundred three urine samples, including 93 urine samples from HIV-seropositive individuals and 10 urine samples from seronegative individuals, were tested by the rapid assay. Ninety-one of the ninety-three urine samples from HIV-seropositive individuals were found to be positive by the rapid assay. There were no false-positive results (98.05% agreement). Virus in all urine samples tested were typed as HIV-1 group M. These results suggest that a rapid assay based on the detection of IgG specific for selected transmembrane HIV antigens provides a simple and reliable test that is capable of distinguishing HIV infections on the basis of viral type.
PMCID: PMC105258  PMID: 9817891

Results 1-10 (10)