Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  The P2Y6 Receptor Inhibits Effector T Cell Activation in Allergic Pulmonary Inflammation1 
We show that the P2Y6 receptor, a G-protein-coupled receptor with high affinity for the nucleotide uridine diphosphate, is an important endogenous inhibitor of T cell function in allergic pulmonary inflammation. Mice conditionally deficient in P2Y6 receptors [p2ry6 (flox/flox);cre/+ mice] exhibited severe airway and tissue pathology relative to P2Y6-sufficient [p2ry6 (flox/flox)] littermates (+/+ mice) when treated intranasally with an extract (Df) of the dust mite Dermatophagoides farinae. P2Y6 receptors were inducibly expressed by lung, lymph node and splenic CD4+ and CD8+ T cells of Df-treated +/+ mice. Df-restimulated P2Y6-deficient lymph node cells produced higher levels of Th1 and Th2 cytokines, and polyclonally-stimulated P2Y6-deficient CD4+ T cells proliferated faster than comparably stimulated P2Y6-sufficient cells. The absence of P2Y6 receptors on CD4+ cells, but not antigen presenting cells, was sufficient to amplify cytokine generation. Thus, P2Y6 receptors protect the lung against exuberant allergen-induced pulmonary inflammation by inhibiting the activation of effector T cells.
PMCID: PMC3140636  PMID: 21724990
2.  Leukotriene C4 Activates Mouse Platelets in Plasma Exclusively Through the Type 2 Cysteinyl Leukotriene Receptor1 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(12):10.4049/jimmunol.1302187.
Leukotriene (LT)C4 and its extracellular metabolites, LTD4 and LTE4, mediate airway inflammation. They signal through three specific receptors (CysLT1R, CysLT2R, and GPR99) with overlapping ligand preferences. Here we demonstrate that LTC4, but not LTD4 or LTE4, activates mouse platelets exclusively through CysLT2R. Platelets expressed CysLT1R and CysLT2R proteins. LTC4 induced surface expression of CD62P by WT mouse platelets in platelet-rich plasma (PRP) and caused their secretion of thromboxane A2 and CXCL4. LTC4 was fully active on PRP from mice lacking either CysLT1R or GPR99, but completely inactive on PRP from CysLT2R-null (Cysltr2−/−) mice. LTC4/CysLT2R signaling required an autocrine ADP-mediated response through P2Y12 receptors. LTC4 potentiated airway inflammation in a platelet- and CysLT2R-dependent manner. Thus, CysLT2R on platelets recognizes LTC4 with unexpected selectivity. Nascent LTC4 may activate platelets at a synapse with granulocytes before it is converted to LTD4, promoting mediator generation and the formation of leukocyte/platelet complexes that facilitate inflammation.
PMCID: PMC3869987  PMID: 24244016
5.  Guidelines for the Diagnosis and Management of Food Allergy in the United States 
Food allergy is an important public health problem that affects children and adults and may be increasing in prevalence. Despite the risk of severe allergic reactions and even death, there is no current treatment for food allergy: the disease can only be managed by allergen avoidance or treatment of symptoms. The diagnosis and management of food allergy also may vary from one clinical practice setting to another. Finally, because patients frequently confuse nonallergic food reactions, such as food intolerance, with food allergies, there is an unfounded belief among the public that food allergy prevalence is higher than it truly is. In response to these concerns, the National Institute of Allergy and Infectious Diseases, working with 34 professional organizations, federal agencies, and patient advocacy groups, led the development of clinical guidelines for the diagnosis and management of food allergy. These Guidelines are intended for use by a wide variety of health care professionals, including family practice physicians, clinical specialists, and nurse practitioners. The Guidelines include a consensus definition for food allergy, discuss comorbid conditions often associated with food allergy, and focus on both IgE-mediated and non-IgE-mediated reactions to food. Topics addressed include the epidemiology, natural history, diagnosis, and management of food allergy, as well as the management of severe symptoms and anaphylaxis. These Guidelines provide 43 concise clinical recommendations and additional guidance on points of current controversy in patient management. They also identify gaps in the current scientific knowledge to be addressed through future research.
PMCID: PMC4241964  PMID: 21134576
food; allergy; anaphylaxis; diagnosis; disease management; guidelines
6.  LTC4 synthase polymorphism modifies efficacy of botanical seed oil combination in asthma 
SpringerPlus  2014;3:661.
Botanical seed oils reduce the generation of leukotrienes in patients with asthma.
Our objective was to determine the efficacy of a botanical seed oil combination against airflow obstruction in asthma, and to determine the pharmacogenomic effect of the leukotriene C4 synthase (LTC4S) polymorphism A-444C.
We conducted a randomized, double-blind, placebo-controlled, cross-over clinical trial in mild to moderate asthmatics to determine the change in FEV1 after 6 weeks of therapy with borage and echium seed oils versus corn oil placebo. We also examined the effect of the variant LTC4S -444C allele on the change in lung function.
We did not identify a difference in FEV1 in the study cohort as a whole (n = 28), nor in the group of A homozygotes. In the C allele carriers (n = 9), FEV1 improved by 3% after treatment with borage and echium seed oils and declined by 4% after placebo corn oil (p = 0.02). All 9 C allele carriers demonstrated an improvement in their FEV1 on active treatment compared to placebo as compared to only 7 out of 19 A allele homozygotes (p = 0.007). We observed transient differences in ex vivo leukotriene generation from circulating basophils and granulocytes. We did not observe significant differences in urinary LTE4 levels.
We conclude that compared to corn oil, a combination of borage and echium seed oils improves airflow obstruction in mild to moderate asthmatics who carry the variant allele in the LTC4S gene (A-444C). Botanical oil supplementation may have therapeutic potential in asthma if used in a personalized manner.
Trial registration: This trial was registered at as NCT00806442.
PMCID: PMC4236308  PMID: 25485197
Asthma; Borage oil; Echium oil; Leukotrienes; LTC4 synthase
8.  Cysteinyl Leukotrienes and Their Receptors; Emerging Concepts 
Cysteinyl leukotrienes (cys-LTs) are potent mediators of inflammation derived from arachidonic acid through the 5-lipoxygenase/leukotriene C4 synthase pathway. The derivation of their chemical structures and identification of their pharmacologic properties predated the cloning of their classical receptors and the development of drugs that modify their synthesis and actions. Recent studies have revealed unanticipated insights into the regulation of cys-LT synthesis, the function of the cys-LTs in innate and adaptive immunity and human disease, and the identification of a new receptor for the cys-LTs. This review highlights these studies and summarizes their potential pathobiologic and therapeutic implications.
PMCID: PMC4077954  PMID: 24991451
Leukotrienes; 5-lipoxygenase; asthma; AERD
9.  Group V secretory phospholipase A2 is involved in macrophage activation and is sufficient for macrophage effector functions in allergic pulmonary inflammation 
We reported that Pla2g5-null mice lacking group V secretory phospholipase A2 (gV-sPLA2) showed reduced eosinophilic pulmonary inflammation and Th2 cytokine generation when challenged with an extract (Df) from house dust mite Dermatophagoides farinae, compared to wild-type (WT) controls. Adoptive transfer studies suggested that gV-sPLA2 in dendritic cells (DCs) was necessary for sensitization of Pla2g5-null mice, but was not sufficient to induce the effector phase of pulmonary inflammation. Here, we demonstrate that gV-sPLA2 is inducibly expressed in mouse and human macrophages (Mϕ activated by IL-4, and is required for the acquisition of Mϕ effector functions that facilitate the effector phase of pulmonary inflammation. We demonstrate that gV-sPLA2 expression in Mϕ is sufficient for the development of pulmonary inflammation, even when inflammation is induced by intrapulmonary administration of IL-4. The concentrations of CCL22/CCL17 and effector T-cell recruitment are severely impaired in Pla2g5-null mice. Intratracheal transfers of enriched CD68+ cells isolated from the lungs of Df-challenged WT donor mice induce eosinophilia, chemokine production, and recruitment of T-cells into the lungs of Pla2g5-null recipients previously sensitized by WT Df-loaded DCs. Our studies identified a unique function of gV-sPLA2 in activation of Mϕ and in their capacity to recruit T-cells to amplify the effector phase of pulmonary inflammation.
PMCID: PMC3939699  PMID: 23650617
10.  Activation of group 2 innate lymphoid cells: A new role for cysteinyl leukotrienes 
PMCID: PMC4024825  PMID: 23810099
Cysteinyl leukotrienes; group 2 innate lymphoid cells; asthma
12.  Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics 
Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders.
The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes.
Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%.
This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation.
PMCID: PMC3851449  PMID: 24088297
Asthma; Gammalinolenic acid; Stearidonic acid; Inflammation; Leukotrienes; Borage oil; Echium oil
13.  Pathogenesis of Aspirin-Exacerbated Respiratory Disease and Reactions 
PMCID: PMC3781366  PMID: 23639708
Cysteinyl leukotriene; Cyclooxygenase; Prostaglandin E2; Thromboxane; Eosinophil; Mast cell; Platelet; AERD
14.  The Translational Repressor T-cell Intracellular Antigen-1 (TIA-1) is a Key Modulator of Th2 and Th17 Responses Driving Pulmonary Inflammation Induced by Exposure to House Dust Mite 
Immunology letters  2012;146(1-2):8-14.
T-cell Intracellular Antigen-1 (TIA-1) is a translational repressor that dampens the production of proinflammatory cytokines and enzymes. In this study we investigated the role of TIA-1 in a mouse model of pulmonary inflammation induced by exposure to the allergenic extract (Df) of the house dust mite Dermatophagoides farinae. When intranasally challenged with a low dose of Df, mice lacking TIA-1 protein (Tia-1−/−) showed more severe airway and tissue eosinophilia, infiltration of lung bronchovascular bundles, and goblet cell metaplasia than wild-type littermates. Tia-1−/− mice also had higher levels of Df-specific IgE and IgG1 in serum and ex vivo restimulated Tia-1−/− lymph node cells and splenocytes transcribed and released more Th2/Th17 cytokines. To evaluate the site of action of TIA-1, we studied the response to Df in bone marrow chimeras. These experiments revealed that TIA-1 acts on both hematopoietic and non-hematopoietic cells to dampen pulmonary inflammation. Our results identify TIA-1 as a negative regulator of allergen-mediated pulmonary inflammation in vivo. Thus, TIA-1 might be an important player in the pathogenesis of bronchial asthma.
PMCID: PMC3407291  PMID: 22525013
T-cell Intracellular Antigen-1; allergen-mediated pulmonary inflammation; cytokines; translation
15.  STAT1 negatively regulates lung basophil IL-4 expression induced by respiratory syncytial virus infection1 
IL-4 contributes to immunopathology induced in mice by primary respiratory syncytial virus (RSV) infection. However, the cellular source of IL-4 in RSV infection is unknown. We identified CD3−CD49b+ cells as the predominant source of IL-4 in the lungs of RSV-infected BALB/c mice. We ruled out T cells, NK cells, NKT cells, mast cells, and eosinophils as IL-4 expressors in RSV infection by flow cytometry. Using IL4 GFP reporter mice (4get) mice, we identified the IL-4-expressing cells in RSV infection as basophils (CD3−CD49b+FcεRI+c-kit−). Because STAT1−/− mice have an enhanced Th2-type response to RSV infection, we also sought to determine the cellular source and role of IL-4 in RSV-infected STAT1−/− mice. RSV infection resulted in significantly more IL-4-expressing CD3−CD49b+ cells in the lungs of STAT1−/− mice than in BALB/c mice. CD49b+IL-4+ cells sorted from the lungs of RSV-infected STAT1−/− mice and stained with Wright-Giemsa had basophil characteristics. As in wild-type BALB/c mice, IL-4 contributed to lung histopathology in RSV-infected STAT1−/− mice. Depletion of basophils in RSV-infected STAT1−/− mice reduced lung IL-4 expression. Thus, we show for the first time that a respiratory virus (RSV) induced basophil accumulation in vivo. Basophils were the primary source of IL-4 in the lung in RSV infection, and STAT1 was a negative regulator of virus-induced basophil IL-4 expression.
PMCID: PMC3755459  PMID: 19587017
basophils; cytokines; viral; lung
16.  Differential Regulation of Cysteinyl Leukotriene Receptor Signaling by Protein Kinase C in Human Mast Cells 
PLoS ONE  2013;8(8):e71536.
Cysteinyl leukotrienes (cys-LTs) are a group of lipid mediators that are potent bronchoconstrictors, powerful inducers of vascular leakage and potentiators of airway hyperresponsiveness. Cys-LTs play an essential role in asthma and are synthesized as well as activated in mast cells (MCs). Cys-LTs relay their effects mainly through two known GPCRs, CysLT1R and CysLT2R. Although protein kinase C (PKC) isoforms are implicated in the regulation of CysLT1R function, neither the role of PKCs in cys-LT-dependent MC inflammatory signaling nor the involvement of specific isoforms in MC function are known. Here, we show that PKC inhibition augmented LTD4 and LTE4-induced calcium influx through CysLT1R in MCs. In contrast, inhibition of PKCs suppressed c-fos expression as well MIP1β generation by cys-LTs. Interestingly, cys-LTs activated both PKCα and PKCε isoforms in MC. However, knockdown of PKCα augmented cys-LT mediated calcium flux, while knockdown of PKCε attenuated cys-LT induced c-fos expression and MIP1β generation. Taken together, these results demonstrate for the first time that cys-LT signaling downstream of CysLT1R in MCs is differentially regulated by two distinct PKCs which modulate inflammatory signals that have significant pathobiologic implications in allergic reactions and asthma pathology.
PMCID: PMC3744564  PMID: 23977066
17.  Prostaglandin E2 Exerts Homeostatic Regulation of Pulmonary Vascular Remodeling in Allergic Airway Inflammation 
Nonselective inhibition of PG synthesis augments inflammation in mouse models of airway disease, but the roles of individual PGs are not completely clarified. To investigate the role of PGE2 in a mouse model of airway inflammation induced by a natural allergen, we used mice lacking the critical terminal synthetic enzyme, microsomal PGE2 synthase (mPGES)-1. Mice lacking mPGES-1 (ptges−/− mice) and wild-type C57BL/6 controls were challenged intranasally with low doses of an extract derived from the house dust mite Dermatophagoides farinae (Der f). The levels of PGE2 in the bronchoalveolar lavage fluids of Der f-treated ptges−/− mice were ~80% lower than the levels in wild-type controls. Der f-induced bronchovascular eosinophilia was modestly enhanced in the ptges−/− mice. Both Der f-treated strains showed similar increases in serum IgE and IgG1, as well as comparable levels of Th1, Th2, and Th17 cytokine production by Der f-stimulated spleen cells. These findings indicated that mPGES-1-derived PGE2 was not required for allergen sensitization or development of effector T cell responses. Unexpectedly, the numbers of vascular smooth muscle cells and the thickness of intrapulmonary vessels were both markedly increased in the Der f-treated ptges−/− mice. These vascular changes were suppressed by the administration of the stable PGE2 analog 16, 16-dimethyl PGE2, or of selective agonists of the E-prostanoid (EP) 1, EP2, and EP3 receptors, respectively, for PGE2. Thus, mPGES-1 and its product, PGE2, protect the pulmonary vasculature from remodeling during allergen-induced pulmonary inflammation, and these effects may be mediated by more than one EP receptor.
PMCID: PMC3721536  PMID: 20028661
18.  Gene-by-environment effect of house dust mite on purinergic receptor P2Y12 (P2RY12) and lung function in children with asthma 
Clinical and Experimental Allergy  2012;42(2):229-237.
Distinct receptors likely exist for leukotriene(LT)E4, a potent mediator of airway inflammation. Purinergic receptor P2Y12 is needed for LTE4-induced airways inflammation, and P2Y12 antagonism attenuates house dust mite-induced pulmonary eosinophilia in mice. Although experimental data support a role for P2Y12 in airway inflammation, its role in human asthma has never been studied.
To test for association between variants in the P2Y12 gene (P2RY12) and lung function in human subjects with asthma, and to examine for gene-by-environment interaction with house dust mite exposure.
19 single nucleotide polymorphisms (SNPs) in P2RY12 were genotyped in 422 children with asthma and their parents (n=1266). Using family-based methods, we tested for associations between these SNPs and five lung function measures. We performed haplotype association analyses and tested for gene-by-environment interactions using house dust mite exposure. We used the false discovery rate to account for multiple comparisons.
Five SNPs in P2RY12 were associated with multiple lung function measures (P values 0.006–0.025). Haplotypes in P2RY12 were also associated with lung function (P values 0.0055–0.046). House dust mite exposure modulated associations between P2RY12 and lung function, with minor allele homozygotes exposed to house dust mite demonstrating worse lung function than those unexposed (significant interaction P values 0.0028–0.040).
Conclusions and clinical relevance
P2RY12 variants were associated with lung function in a large family-based asthma cohort. House dust mite exposure caused significant gene-by-environment effects. Our findings add the first human evidence to experimental data supporting a role for P2Y12 in lung function. P2Y12 could represent a novel target for asthma treatment.
PMCID: PMC3353543  PMID: 22010907
Purinergic receptor; leukotriene; asthma; house dust mite; lung function
19.  NIAID-Sponsored 2010 Guidelines for Managing Food Allergy: Applications in the Pediatric Population 
Pediatrics  2011;128(5):955-965.
Data from many studies have suggested a rise in the prevalence of food allergies during the past 10 to 20 years. Currently, no curative treatments for food allergy exist, and there are no effective means of preventing the disease. Management of food allergy involves strict avoidance of the allergen in the patient's diet and treatment of symptoms as they arise. Because diagnosis and management of the disease can vary between clinical practice settings, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored development of clinical guidelines for the diagnosis and management of food allergy. The guidelines establish consensus and consistency in definitions, diagnostic criteria, and management practices. They also provide concise recommendations on how to diagnose and manage food allergy and treat acute food allergy reactions. The original guidelines encompass practices relevant to patients of all ages, but food allergy presents unique and specific concerns for infants, children, and teenagers. To focus on those concerns, we describe here the guidelines most pertinent to the pediatric population.
PMCID: PMC3208961  PMID: 21987705
food allergy; food hypersensitivity; infants; children; guidelines; anaphylaxis
20.  Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FcεRI 
Studies of human mast cells are constrained by the paucity of functional cell lines, the expense of maintaining mast cells in culture, and technical complexities.
We derived and characterized a human mast cell line that arose spontaneously from a culture of non-transformed hematopoietic progenitor cells.
CD34+-enriched mononuclear cells derived from a donor with aspirin exacerbated respiratory disease were cultured for 8 weeks with stem cell factor and interleukin-6 and with interleukin-3 for the first week only. The cells (termed LUVA cells) survived and proliferated without further addition of any growth factors and have been maintained in culture for ~2 years.
LUVA cells possess metachromatic cytoplasmic granules that are immunoreactive for tryptase, cathepsin G, and carboxypeptidase A3. They express transcripts encoding genes for FcεRI, c-kit, chymase, tryptase, histidine decarboxylase, carboxypeptidase A3, and the type 1 receptor for cysteinyl leukotrienes. Flow cytometry confirmed uniform expression of FcεRI, c-kit and FcγRII. FcεRI cross-linkage induced the release of β-hexosaminidase, prostaglandin D2, thromboxane A2, and macrophage inflammatory protein-1β. Immortalization was not associated with either a known genomic mutation of c-kit in the donor or a somatic mutation of c-kit within the cells, and it was not associated with c-kit autophosphorylation.
LUVA cells are an immortalized human mast cell line that can be maintained without stem cell factor and display high levels of normally signaling c-kit and FcεRI. These cells will prove valuable for functional human mast cell studies.
PMCID: PMC3052637  PMID: 21281958
Mast cell; SCF; FcεRI; c-Kit; Tryptase; CPA3
21.  Group V secretory phospholipase A2 reveals its role in house dust mite-induced allergic pulmonary inflammation by regulation of dendritic cell function 
We have previously shown that group V secretory phospholipase A2 (sPLA2) regulates phagocytosis of zymosan and Candida albicans by a mechanism that depends on fusion of phagosomes with late endosomes in macrophages. Here we report that group V sPLA2 (Pla2g5)-null mice exposed to an extract of house dust mite Dermatophagoides farinae (Df) had markedly reduced pulmonary inflammation and goblet cell metaplasia compared to wild-type (WT) mice. Pla2g5-null mice had also impaired Th2-type adaptive immune responses to Df compared to WT mice. Pla2g5-null bone marrow-derived dendritic cells (BMDCs) activated by Df had delayed intracellular processing of allergen and impaired allergen-dependent maturation, a pattern recapitulated by the native lung DCs of Df-challenged mice. Adoptively transferred Df-loaded Pla2g5-null BMDCs were less able than Df-loaded WT BMDCs to induce pulmonary inflammation and Th2 polarization in WT mice. However, Pla2g5-null recipients transferred with WT or Pla2g5-null Df-loaded BMDCs exhibited significantly reduced local inflammatory responses to Df, even though the transfer of WT BMDCs still induced an intact Th2 cytokine response in regional lymph nodes. Thus, the expression of group V sPLA2 in APC regulates Ag processing and maturation of dendritic cells, and contributes to pulmonary inflammation and immune response against Df. Furthermore, an additional yet to be identified resident cell type is essential for the development of pulmonary inflammation, likely a cell in which group V sPLA2 is upregulated by Df and whose function is also regulated by group V sPLA2.
PMCID: PMC3003260  PMID: 20817863
22.  Fas-activated serine/threonine phosphoprotein promotes immune-mediated pulmonary inflammation 
We have generated Fas activated serine threonine phosphoprotein-deficient mice (FAST−/−) to study the in vivo role of FAST in immune system function. In a model of house dust mite (HDM)-induced allergic pulmonary inflammation, wild type mice develop a mixed cellular infiltrate composed of eosinophils, lymphocytes and neutrophils. FAST−/− mice develop airway inflammation that is distinguished by the near absence of neutrophils. Similarly, LPS-induced alveolar neutrophil recruitment is markedly reduced in FAST−/− mice compared to wild type controls. This is accompanied by reduced concentrations of cytokines (TNF-α, IL-6 and IL-23) and chemoattractants (MIP-2 and KC) in bronchoalveolar lavage fluids. As FAST−/− neutrophils exhibit normal chemotaxis and survival, impaired neutrophil recruitment is likely to be due to reduced production of chemoattractants within the pulmonary parenchyma. Studies using bone marrow chimeras implicate lung resident hematopoietic cells (e.g. pulmonary dendritic cells and/or alveolar macrophages) in this process. In conclusion, our results introduce FAST as a pro-inflammatory factor that modulates the function of lung resident hematopoietic cells to promote neutrophil recruitment and pulmonary inflammation.
PMCID: PMC2858774  PMID: 20363972
23.  LPA5 Is Abundantly Expressed by Human Mast Cells and Important for Lysophosphatidic Acid Induced MIP-1β Release 
PLoS ONE  2011;6(3):e18192.
Lysophosphatidic acid (LPA) is a bioactive lipid inducing proliferation, differentiation as well as cytokine release by mast cells through G-protein coupled receptors. Recently GPR92/LPA5 was identified as an LPA receptor highly expressed by cells of the immune system, which prompted us to investigate its presence and influence on mast cells.
Principal Findings
Transcript analysis using quantitative real-time PCR revealed that LPA5 is the most prevalent LPA-receptor in human mast cells. Reduction of LPA5 levels using shRNA reduced calcium flux and abolished MIP-1β release in response to LPA.
LPA5 is a bona fide LPA receptor on human mast cells responsible for the majority of LPA induced MIP-1β release.
PMCID: PMC3065470  PMID: 21464938
24.  The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications 
The intracellular parent of the cysteinyl leukotrienes (cys-LTs), leukotriene (LT) C4, is formed by conjugation of LTA4 and reduced glutathione by LTC4 synthase in mast cells, eosinophils, basophils, and macrophages. After extracellular export, LTC4 is converted to LTD4 and LTE4 by sequential enzymatic removal of glutamic acid and then glycine. Only LTE4 is sufficiently stable to be prominent in biologic fluids, such as urine or bronchoalveolar lavage fluid of asthmatic individuals and at sites of inflammation in animal models. LTE4 has received little attention because it binds poorly to the classical receptors, CysLT1R and CysLT2R, and was much less active on normal airways than LTC4 or LTD4. However, early studies indicated that LTE4 caused skin swelling in humans as potently as LTC4 and LTD4, that airways of asthmatic subjects (particularly those that were aspirin-sensitive) were selectively hyperresponsive to LTE4, and that a potential distinct LTE4 receptor was present in guinea pig trachea. Recent studies have begun to uncover receptors selective for LTE4; P2Y12, an ADP receptor, and CysLTER, observed functionally in skin of mice lacking CysLT1R and CysLT2R. These findings prompt a renewed focus on LTE4 receptors as therapeutic targets that are not currently addressed by available receptor antagonists.
PMCID: PMC2739263  PMID: 19647860
Leukotriene E4; G protein-coupled receptor; bronchial asthma; inflammation; knockout mouse
25.  Leukotriene E4–induced pulmonary inflammation is mediated by the P2Y12 receptor 
The Journal of Experimental Medicine  2009;206(11):2543-2555.
Of the potent lipid inflammatory mediators comprising the cysteinyl leukotrienes (LTs; LTC4, LTD4, and LTE4), only LTE4 is stable and abundant in vivo. Although LTE4 shows negligible activity at the type 1 and 2 receptors for cys-LTs (CysLT1R and CysLT2R), it is a powerful inducer of mucosal eosinophilia and airway hyperresponsiveness in humans with asthma. We show that the adenosine diphosphate (ADP)–reactive purinergic (P2Y12) receptor is required for LTE4-mediated pulmonary inflammation. P2Y12 receptor expression permits LTE4 -induced activation of extracellular signal-regulated kinase in Chinese hamster ovary cells and permits chemokine and prostaglandin D2 production by LAD2 cells, a human mast cell line. P2Y12 receptor expression by LAD2 cells is required for competition between radiolabeled ADP and unlabeled LTE4 but not for direct binding of LTE4, suggesting that P2Y12 complexes with another receptor to recognize LTE4. Administration of LTE4 to the airways of sensitized mice potentiates eosinophilia, goblet cell metaplasia, and expression of interleukin-13 in response to low-dose aerosolized allergen. These responses persist in mice lacking both CysLT1R and CysLT2R but not in mice lacking P2Y12 receptors. The effects of LTE4 on P2Y12 in the airway were abrogated by platelet depletion. Thus, the P2Y12 receptor is required for proinflammatory actions of the stable abundant mediator LTE4 and is a novel potential therapeutic target for asthma.
PMCID: PMC2768854  PMID: 19822647

Results 1-25 (33)