Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Menaquinones, Bacteria, and the Food Supply: The Relevance of Dairy and Fermented Food Products to Vitamin K Requirements123 
Advances in Nutrition  2013;4(4):463-473.
Vitamin K exists in the food supply as phylloquinone, a plant-based form and as menaquinones (MKs), a collection of isoprenologues mostly originating from bacterial synthesis. Although multiple bacterial species used as starter cultures for food fermentations synthesize MK, relatively little is known about the presence and distribution of MK in the food supply and the relative contribution of MK to total dietary vitamin K intake. Dairy products may be a predominant source of dietary MK in many regions of the world, and there is recent interest in enhancing the MK content of dairy products through identification and selection of MK-producing bacteria in dairy fermentations. This interest is increased by emerging evidence that current dietary recommendations based on the classic role of vitamin K as an enzyme cofactor for coagulation proteins may not be optimal for supporting vitamin K requirements in extrahepatic tissues and that MK may have unique bioactivity beyond that as an enzyme cofactor. Observational studies have reported favorable associations between MK intake and bone and cardiovascular health. Although randomized trials have provided some evidence to support the beneficial effects of MK on bone, the evidence to date is not definitive, and randomized trials have not yet examined MK intake in relation to cardiovascular outcomes. Food production practices provide a means to enhance dietary MK availability and intake. However, parallel research is needed to optimize these production practices, develop comprehensive food MK content databases, and test hypotheses of unique beneficial physiological roles of MK beyond that achieved by phylloquinone.
PMCID: PMC3941825  PMID: 23858094
2.  Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis 
PLoS ONE  2012;7(12):e51663.
Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes.
PMCID: PMC3519859  PMID: 23240053
3.  The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS 
Microbial Cell Factories  2011;10(Suppl 1):S21.
In industrial fermentation processes, the rate of milk acidification by Streptococcus thermophilus is of major technological importance. The cell-envelope proteinase PrtS was previously shown to be a key determinant of the milk acidification activity in this species. The PrtS enzyme is tightly anchored to the cell wall via a mechanism involving the typical sortase A (SrtA) and initiates the breakdown of milk casein into small oligopeptides. The presence or absence of PrtS divides the S. thermophilus strains into two phenotypic groups i.e. the slow and the fast acidifying strains. The aim of this study was to improve the milk acidification rate of slow S. thermophilus strains, and hence optimise the fermentation process of dairy products.
In the present work, we developed for the first time a strategy based on natural transformation to confer the rapid acidification phenotype to slow acidifying starter strains of S. thermophilus. First, we established by gene disruption that (i) prtS, encoding the cell-envelope proteinase, is a key factor responsible for rapid milk acidification in fast acidifying strains, and that (ii) srtA, encoding sortase A, is not absolutely required to express the PrtS activity. Second, a 15-kb PCR product encompassing the prtS genomic island was transfered by natural transformation using the competence-inducing peptide in three distinct prtS-defective genetic backgrounds having or not a truncated sortase A gene. We showed that in all cases the milk acidification rate of transformants was significantly increased, reaching a level similar to that of wild-type fast acidifying strains. Furthermore, it appeared that the prtS-encoded activity does not depend on the prtS copy number or on its chromosomal integration locus.
We have successfully used natural competence to transfer the prtS locus encoding the cell-envelope proteinase in three slow acidifying strains of S. thermophilus, allowing their conversion into fast acidifying derivatives. The efficient protocol developed in this article will provide the dairy industry with novel and optimised S. thermophilus starter strains.
PMCID: PMC3231928  PMID: 21995822
4.  Development of a Versatile Procedure Based on Natural Transformation for Marker-Free Targeted Genetic Modification in Streptococcus thermophilus▿  
Applied and Environmental Microbiology  2010;76(23):7870-7877.
A versatile natural transformation protocol was established for and successfully applied to 18 of the 19 Streptococcus thermophilus strains tested. The efficiency of the protocol enables the use of in vitro-amplified mutagenesis fragments to perform deletion or insertion of large genetic fragments. Depending on the phenotype linked to the mutation, markerless mutants can be selected either in two steps, i.e., resistance marker insertion and excision using an adapted Cre-loxP system, or in one step using a powerful positive screening procedure as illustrated here for histidine prototrophy.
PMCID: PMC2988589  PMID: 20935129
5.  A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in Streptococcus thermophilus and Streptococcus salivarius▿ †  
Journal of Bacteriology  2009;192(5):1444-1454.
In streptococcal species, the key step of competence development is the transcriptional induction of comX, which encodes the alternative sigma factor σX, which positively regulates genes necessary for DNA transformation. In Streptococcus species belonging to the mitis and mutans groups, induction of comX relies on the activation of a three-component system consisting of a secreted pheromone, a histidine kinase, and a response regulator. In Streptococcus thermophilus, a species belonging to the salivarius group, the oligopeptide transporter Ami is essential for comX expression under competence-inducing conditions. This suggests a different regulation pathway of competence based on the production and reimportation of a signal peptide. The objective of our work was to identify the main actors involved in the early steps of comX induction in S. thermophilus LMD-9. Using a transcriptomic approach, four highly induced early competence operons were identified. Among them, we found a Rgg-like regulator (Ster_0316) associated with a nonannotated gene encoding a 24-amino-acid hydrophobic peptide (Shp0316). Through genetic deletions, we showed that these two genes are essential for comX induction. Moreover, addition to the medium of synthetic peptides derived from the C-terminal part of Shp0316 restored comX induction and transformation of a Shp0316-deficient strain. These peptides also induced competence in S. thermophilus and Streptococcus salivarius strains that are poorly transformable or not transformable. Altogether, our results show that Ster_0316 and Shp0316, renamed ComRS, are the two members of a novel quorum-sensing system responsible for comX induction in species from the salivarius group, which differs from the classical phosphorelay three-component system identified previously in streptococci.
PMCID: PMC2820839  PMID: 20023010
6.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus▿  
Journal of Bacteriology  2007;190(4):1390-1400.
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated genes are linked to a mechanism of acquired resistance against bacteriophages. Bacteria can integrate short stretches of phage-derived sequences (spacers) within CRISPR loci to become phage resistant. In this study, we further characterized the efficiency of CRISPR1 as a phage resistance mechanism in Streptococcus thermophilus. First, we show that CRISPR1 is distinct from previously known phage defense systems and is effective against the two main groups of S. thermophilus phages. Analyses of 30 bacteriophage-insensitive mutants of S. thermophilus indicate that the addition of one new spacer in CRISPR1 is the most frequent outcome of a phage challenge and that the iterative addition of spacers increases the overall phage resistance of the host. The added new spacers have a size of between 29 to 31 nucleotides, with 30 being by far the most frequent. Comparative analysis of 39 newly acquired spacers with the complete genomic sequences of the wild-type phages 2972, 858, and DT1 demonstrated that the newly added spacer must be identical to a region (named proto-spacer) in the phage genome to confer a phage resistance phenotype. Moreover, we found a CRISPR1-specific sequence (NNAGAAW) located downstream of the proto-spacer region that is important for the phage resistance phenotype. Finally, we show through the analyses of 20 mutant phages that virulent phages are rapidly evolving through single nucleotide mutations as well as deletions, in response to CRISPR1.
PMCID: PMC2238228  PMID: 18065545
7.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus▿ † 
Journal of Bacteriology  2007;190(4):1401-1412.
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
PMCID: PMC2238196  PMID: 18065539
8.  Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis 
Tolerance to digestive stresses is one of the main factors limiting the use of microorganisms as live probiotic agents. Susceptibility to bile salts and tolerance acquisition in the probiotic strain Propionibacterium freudenreichii SI41 were characterized. We showed that pretreatment with a moderate concentration of bile salts (0.2 g/liter) greatly increased its survival during a subsequent lethal challenge (1.0 g/liter, 60 s). Bile salts challenge led to drastic morphological changes, consistent with intracellular material leakage, for nonadapted cells but not for preexposed ones. Moreover, the physiological state of the cells during lethal treatment played an important role in the response to bile salts, as stationary-phase bacteria appeared much less sensitive than exponentially growing cells. Either thermal or detergent pretreatment conferred significantly increased protection toward bile salts challenge. In contrast, some other heterologous pretreatments (hypothermic and hyperosmotic) had no effect on tolerance to bile salts, while acid pretreatment even might have sensitized the cells. Two-dimensional electrophoresis experiments revealed that at least 24 proteins were induced during bile salts adaptation. Identification of these polypeptides suggested that the bile salts stress response involves signal sensing and transduction, a general stress response (also triggered by thermal denaturation, oxidative toxicity, and DNA damage), and an alternative sigma factor. Taken together, our results provide new insights into the tolerance of P. freudenreichii to bile salts, which must be taken into consideration for the use of probiotic strains and the improvement of technological processes.
PMCID: PMC165135  PMID: 12839748
9.  Two-Dimensional Electrophoresis Study of Lactobacillus delbrueckii subsp. bulgaricus Thermotolerance 
The response of Lactobacillus delbrueckii subsp. bulgaricus cells to heat stress was studied by use of a chemically defined medium. Two-dimensional electrophoresis (2-DE) analysis was used to correlate the kinetics of heat shock protein (HSP) induction with cell recovery from heat injury. We demonstrated that enhanced viability, observed after 10 min at 65°C, resulted from the overexpression of HSP and from mechanisms not linked to protein synthesis. In order to analyze the thermoadaptation mechanisms involved, thermoresistant variants were selected. These variants showed enhanced constitutive tolerance toward heat shock. However, contrary to the wild-type strain, these variants were poorly protected after osmotic or heat pretreatments. This result suggests that above a certain threshold, cells reach a maximum level of protection that cannot be easily exceeded. A comparison of protein patterns showed that the variants were able to induce more rapidly their adaptive mechanisms than the original strain. In particular, the variants were able to express constitutively more HSP, leading to the higher level of thermoprotection observed. This is the first report of the study by 2-DE of the heat stress response in L. delbrueckii subsp. bulgaricus.
PMCID: PMC123771  PMID: 11872450
10.  Changes in Protein Synthesis and Morphology during Acid Adaptation of Propionibacterium freudenreichii 
Survival of bacteria in changing environments depends on their ability to adapt to abiotic stresses. Microorganisms used in food technology face acid stress during fermentation processes. Similarly, probiotic bacteria have to survive acid stress imposed within the stomach in order to reach the intestine and play a beneficial role. Propionibacteria are used both as cheese starters and as probiotics in human alimentation. Adaptation to low pH thus constitutes a limit to their efficacy. Acid stress adaptation in the probiotic SI41 strain of Propionibacterium freudenreichii was therefore investigated. The acid tolerance response (ATR) was evidenced in a chemically defined medium. Transient exposure to pH 5 afforded protection toward acid challenge at pH 2. Protein neosynthesis was shown to be required for optimal ATR, since chloramphenicol reduced the acquired acid tolerance. Important changes in genetic expression were observed with two-dimensional electrophoresis during adaptation. Among the up-regulated polypeptides, a biotin carboxyl carrier protein and enzymes involved in DNA synthesis and repair were identified during the early stress response, while the universal chaperonins GroEL and GroES corresponded to a later response. The beneficial effect of ATR was evident at both the physiological and morphological levels. This study constitutes a first step toward understanding the very efficient ATR described in P. freudenreichii.
PMCID: PMC92832  PMID: 11319077
11.  Use of Two-Dimensional Electrophoresis To Study Differential Protein Expression in Divercin V41-Resistant and Wild-Type Strains of Listeria monocytogenes 
Applied and Environmental Microbiology  2000;66(10):4318-4324.
The use of bacteriocins from food-grade lactic acid bacteria to fight against the food-borne pathogen Listeria monocytogenes has been gaining interest. However, the emergence of resistant cells is frequently reported when Listeria is exposed to such antibacterials. A two-dimensional electrophoresis study of whole-cell protein expression of Listeria monocytogenes variants sensitive or resistant to the action of a bacteriocin produced by Carnobacterium divergens V41, divercin V41, is reported in this paper. The resistant variant obtained from the sensitive strain of L. monocytogenes P was also resistant to piscicocins V1 and SF668, but remained sensitive to nisin. Its growth rate was 50% less than the sensitive strain, and the MIC for it was 104 times higher. No reversion of the resistance was observed after 20 successive cultures in the absence of divercin V41. Comparison of the protein patterns by two-dimensional gel electrophoresis analysis showed clear differences. In the resistant variant pattern, at least nine spots had disappeared and eight new ones were observed. One of the newly synthesized proteins was identified as a flagellin of L. monocytogenes. Direct interaction between flagellin and divercin V41 was not evidenced. Intracellular synthesis of flagellin is probably an indirect effect of a modification in transcriptional regulation with widespread effects through a sigma factor. An intense protein, only present in the sensitive strain, was identified as a non-heme iron-binding ferritin displaying strong similarities to Dps proteins. Common modifications in the transcriptional regulation for these two proteins are discussed.
PMCID: PMC92302  PMID: 11010876
12.  Interactions between Pyruvate and Lactate Metabolism in Propionibacterium freudenreichii subsp. shermanii: In Vivo 13C Nuclear Magnetic Resonance Studies 
In vivo 13C nuclear magnetic resonance spectroscopy was used to elucidate the pathways and the regulation of pyruvate metabolism and pyruvate-lactate cometabolism noninvasively in living-cell suspensions of Propionibacterium freudenreichii subsp. shermanii. The most important result of this work concerns the modification of fluxes of pyruvate metabolism induced by the presence of lactate. Pyruvate was temporarily converted to lactate and alanine; the flux to acetate synthesis was maintained, but the flux to propionate synthesis was increased; and the reverse flux of the first part of the Wood-Werkman cycle, up to acetate synthesis, was decreased. Pyruvate was consumed at apparent initial rates of 148 and 90 μmol · min−1 · g−1 (cell dry weight) when it was the sole substrate or cometabolized with lactate, respectively. Lactate was consumed at an apparent initial rate of 157 μmol · min−1 · g−1 when it was cometabolized with pyruvate. P. shermanii used several pathways, namely, the Wood-Werkman cycle, synthesis of acetate and CO2, succinate synthesis, gluconeogenesis, the tricarboxylic acid cycle, and alanine synthesis, to manage its pyruvate pool sharply. In both types of experiments, acetate synthesis and the Wood-Werkman cycle were the metabolic pathways used most.
PMCID: PMC101448  PMID: 10788375
13.  Delineation of Key Amino Acid Side Chains and Peptide Domains for Antimicrobial Properties of Divercin V41, a Pediocin-Like Bacteriocin Secreted by Carnobacterium divergens V41 
Divercin V41 (DV41) is a class IIa bacteriocin produced by Carnobacterium divergens V41. This antilisterial peptide is homologous to pediocin PA-1 and contains two disulfide bonds. To establish the structure-activity relationships of this specific family of bacteriocin, chemical modifications and enzymatic hydrolysis were performed on DV41. Alteration of the net charge of this cationic bacteriocin by succinylation and acetylation revealed that, in a certain range, the electrostatic interactions were surprisingly not necessary for the activity of DV41. Cleavage of DV41 by endoproteinase Asp-N released two fragments N1[1–17] and N2[18–43] corresponding to the conserved hydrophilic N-terminal and the variable hydrophobic C-terminal sequences, respectively. Inhibitory assays showed that only the C-terminal fragment was active, and after trypsin cleavage at Lys42 or disulfide reduction it lost its inhibitory activity. These results suggested that both hydrophobicity and folding imposed by the Cys25-Cys43 disulfide bond were essential for antilisterial activity of the C-terminal hydrophobic peptide. Chemical oxidation of tryptophan residues by N-bromosuccinimide demonstrated that these residues were crucial for inhibitory activity since modification of any one of them rendered DV41 inactive. On the contrary, only the modification of all the three tyrosine residues caused a total loss of antilisterial activity. These latter results strengthened previous results suggesting that the N-terminal domain containing the YGNGV consensus sequence was not involved in the binding of DV41 to a potential specific receptor on listerial cells.
PMCID: PMC91433  PMID: 10388680

Results 1-13 (13)