PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (38)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference 
PLoS ONE  2014;9(6):e98579.
In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.
doi:10.1371/journal.pone.0098579
PMCID: PMC4045815  PMID: 24896584
2.  Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity 
BMC Biology  2014;12:44.
Background
Wnt proteins are a family of secreted signaling molecules that regulate key developmental processes in metazoans. The molecular basis of Wnt binding to Frizzled and LRP5/6 co-receptors has long been unknown due to the lack of structural data on Wnt ligands. Only recently, the crystal structure of the Wnt8-Frizzled8-cysteine-rich-domain (CRD) complex was solved, but the significance of interaction sites that influence Wnt signaling has not been assessed.
Results
Here, we present an extensive structure-function analysis of mouse Wnt3a in vitro and in vivo. We provide evidence for the essential role of serine 209, glycine 210 (site 1) and tryptophan 333 (site 2) in Fz binding. Importantly, we discovered that valine 337 in the site 2 binding loop is critical for signaling without contributing to binding. Mutations in the presumptive second CRD binding site (site 3) partly abolished Wnt binding. Intriguingly, most site 3 mutations increased Wnt signaling, probably by inhibiting Wnt-CRD oligomerization. In accordance, increasing amounts of soluble Frizzled8-CRD protein modulated Wnt3a signaling in a biphasic manner.
Conclusions
We propose a concentration-dependent switch in Wnt-CRD complex formation from an inactive aggregation state to an activated high mobility state as a possible modulatory mechanism in Wnt signaling gradients.
doi:10.1186/1741-7007-12-44
PMCID: PMC4068752  PMID: 24885675
Wnt signaling; Wnt; Frizzled; Wnt3a mutation analysis
3.  Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis 
The Journal of Experimental Medicine  2013;210(9):1761-1777.
The Wnt cargo receptor Evi maintains normal skin homeostasis and barrier function via Wnt secretion in the epidermis.
Cells of the epidermis renew constantly from germinal layer stem cells. Although epithelial cell differentiation has been studied in great detail and the role of Wnt signaling in this process is well described, the contribution of epidermal Wnt secretion in epithelial cell homeostasis remains poorly understood. To analyze the role of Wnt proteins in this process, we created a conditional knockout allele of the Wnt cargo receptor Evi/Gpr177/Wntless and studied mice that lacked Evi expression in the epidermis. We found that K14-Cre, Evi-LOF mice lost their hair during the first hair cycle, showing a reddish skin with impaired skin barrier function. Expression profiling of mutant and wild-type skin revealed up-regulation of inflammation-associated genes. Furthermore, we found that Evi expression in psoriatic skin biopsies is down-regulated, suggesting that Evi-deficient mice developed skin lesions that resemble human psoriasis. Immune cell infiltration was detected in Evi-LOF skin. Interestingly, an age-dependent depletion of dendritic epidermal T cells (DETCs) and an infiltration of γδlow T cells in Evi mutant epidermis was observed. Collectively, the described inflammatory skin phenotype in Evi-deficient mice revealed an essential role of Wnt secretion in maintaining normal skin homeostasis by enabling a balanced epidermal-dermal cross talk, which affects immune cell recruitment and DETC survival.
doi:10.1084/jem.20121871
PMCID: PMC3754868  PMID: 23918954
4.  A novel phenotypic dissimilarity method for image-based high-throughput screens 
BMC Bioinformatics  2013;14:336.
Background
Discovering functional relationships of genes through cell-based phenotyping has become an important approach in functional genomics. High-throughput imaging offers the ability to quantitatively assess complex phenotypes after perturbation by RNA interference (RNAi). Such image-based high-throughput RNAi screening studies have facilitated the discovery of novel components of gene networks and their interactions. Images generated by automated microscopy are typically analyzed by extracting quantitative features of individual cells, resulting in large multidimensional data sets. Robust and sensitive methods to interpret these data sets and to derive biologically relevant information in a high-throughput and unbiased manner remain to be developed.
Results
Here we propose a new analysis method, PhenoDissim, which computes the phenotypic dissimilarity between cell populations via Support Vector Machine classification and cross validation. Applying this method to a kinome RNAi screening data set, we demonstrate that the proposed method shows a good replicate reproducibility, separation of controls and clustering quality, and we are able to identify siRNA phenotypes and discover potential functional links between genes.
Conclusions
PhenoDissim is a novel analysis method for image-based high-throughput screen, relying on two parameters which can be automatically optimized without a priori knowledge. PhenoDissim is freely available as an R package.
doi:10.1186/1471-2105-14-336
PMCID: PMC4225524  PMID: 24256072
Phenotypic dissimilarity; Image-based high-throughput screening; High-content screening; RNAi; Gene networks
5.  Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells 
Nature Communications  2013;4:2610.
Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.
Activating mutations in the Wnt signalling pathway are associated with colon cancer. Here the authors show that tumour cells carrying mutations in APC and β-catenin are still regulated by Wnt ligands, suggesting that Wnt secretion and receptor signalling remains important to control downstream signalling.
doi:10.1038/ncomms3610
PMCID: PMC3826636  PMID: 24162018
6.  Control of Pro-Inflammatory Gene Programs by Regulated Trimethylation and Demethylation of Histone H4K20 
Molecular cell  2012;48(1):28-38.
Summary
Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of co-regulator complexes that function to read, write and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR corepressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-κB-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 tri-methylation/de-methylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis.
doi:10.1016/j.molcel.2012.07.020
PMCID: PMC3472359  PMID: 22921934
7.  Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines 
Nucleic Acids Research  2013;41(21):e199.
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.
doi:10.1093/nar/gkt836
PMCID: PMC3834839  PMID: 24049077
8.  E-TALEN: a web tool to design TALENs for genome engineering 
Nucleic Acids Research  2013;41(20):e190.
Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.
doi:10.1093/nar/gkt789
PMCID: PMC3814377  PMID: 24003033
9.  The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis 
The Journal of Cell Biology  2013;200(4):505-522.
A functional screen identified MARK4 as a positive regulator of axonemal extension and ciliogenesis via its interaction with the mother centriolar protein ODF2.
Despite the critical contributions of cilia to embryonic development and human health, key regulators of cilia formation await identification. In this paper, a functional RNA interference–based screen linked 30 novel protein kinases with ciliogenesis. Of them, we have studied the role of the microtubule (MT)-associated protein/MT affinity regulating kinase 4 (MARK4) in depth. MARK4 associated with the basal body and ciliary axoneme in human and murine cell lines. Ultrastructural and functional analyses established that MARK4 kinase activity was required for initiation of axoneme extension. We identified the mother centriolar protein ODF2 as an interaction partner of MARK4 and showed that ODF2 localization to the centriole partially depended on MARK4. Our data indicated that, upon MARK4 or ODF2 knockdown, the ciliary program arrested before the complete removal of the CP110–Cep97 inhibitory complex from the mother centriole, suggesting that these proteins act at this level of axonemal extension. We propose that MARK4 is a critical positive regulator of early steps in ciliogenesis.
doi:10.1083/jcb.201206013
PMCID: PMC3575539  PMID: 23400999
10.  GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update 
Nucleic Acids Research  2012;41(Database issue):D1021-D1026.
RNA interference (RNAi) represents a powerful method to systematically study loss-of-function phenotypes on a large scale with a wide variety of biological assays, constituting a rich source for the assignment of gene function. The GenomeRNAi database (http://www.genomernai.org) makes available RNAi phenotype data extracted from the literature for human and Drosophila. It also provides RNAi reagent information, along with an assessment as to their efficiency and specificity. This manuscript describes an update of the database previously featured in the NAR Database Issue. The new version has undergone a complete re-design of the user interface, providing an intuitive, flexible framework for additional functionalities. Screen information and gene-reagent-phenotype associations are now available for download. The integration with other resources has been improved by allowing in-links via GenomeRNAi screen IDs, or external gene or reagent identifiers. A distributed annotation system (DAS) server enables the visualization of the phenotypes and reagents in the context of a genome browser. We have added a page listing ‘frequent hitters’, i.e. genes that show a phenotype in many screens, which might guide on-going RNAi studies. Structured annotation guidelines have been established to facilitate consistent curation, and a submission template for direct submission by data producers is available for download.
doi:10.1093/nar/gks1170
PMCID: PMC3531141  PMID: 23193271
11.  A Genome-Wide RNA Interference Screen Identifies Caspase 4 as a Factor Required for Tumor Necrosis Factor Alpha Signaling 
Molecular and Cellular Biology  2012;32(17):3372-3381.
Tumor necrosis factor alpha (TNF-α) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-α pathway activity has been realized in several diseases, and antagonists of TNF-α have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-α receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-α, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-α signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-κB activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-α-induced NF-κB signaling that is required for the activation of IκB kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).
doi:10.1128/MCB.06739-11
PMCID: PMC3422000  PMID: 22733992
12.  Identification of Human Proteins That Modify Misfolding and Proteotoxicity of Pathogenic Ataxin-1 
PLoS Genetics  2012;8(8):e1002897.
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1–interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Author Summary
Spinocerebellar ataxias (SCAs) are a group of inherited neurodegenerative diseases with around 30 subtypes, which are characterized by a progressive loss of cerebellar neurons. Neuronal death has been linked to the aggregation of mutated disease-causing proteins, such as ataxin-1 (ATXN1). Pathogenic ATXN1 contains an elongated glutamine stretch, which triggers spontaneous misfolding and self-assembly of the protein into aggregates. Earlier studies in lower organisms have discovered many non-human proteins that alter aggregation and/or toxicity of mutant ATXN1. Here, we combine an experimental screening approach with bioinformatics to find human proteins that modulate aggregation and toxicity of ATXN1. We identified 21 proteins affecting mutant ATXN1 in mammalian cells. Further characterization revealed that enhancers of ATXN1-mediated toxicity contain α-helical coiled-coil domains as structural motifs, while suppressors do not. Detailed studies with the ATXN1 interacting proteins MED15 and Pum1 finally demonstrated that coiled-coil domains are indeed critical for the aggregation and toxicity promoting effects of human proteins. Our study contributes to a deeper understanding of ATXN1 aggregation and SCA1 pathogenesis and highlights potential therapeutic targets for further investigations.
doi:10.1371/journal.pgen.1002897
PMCID: PMC3420947  PMID: 22916034
13.  Transmembrane Protein 198 Promotes LRP6 Phosphorylation and Wnt Signaling Activation▿ 
Molecular and Cellular Biology  2011;31(13):2577-2590.
Wnt/β-catenin signaling is fundamental in embryogenesis and tissue homeostasis in metazoans. Upon Wnt stimulation, cognate coreceptors LRP5 and LRP6 ([LRP5/6] low-density lipoprotein receptor-related proteins 5 and 6) are activated via phosphorylation at key residues. Although several kinases have been implicated, the LRP5/6 activation mechanism remains unclear. Here, we report that transmembrane protein 198 (TMEM198), a previously uncharacterized seven-transmembrane protein, is able to specifically activate LRP6 in transducing Wnt signaling. TMEM198 associates with LRP6 and recruits casein kinase family proteins, via the cytoplasmic domain, to phosphorylate key residues important for LRP6 activation. In mammalian cells, TMEM198 is required for Wnt signaling and casein kinase 1-induced LRP6 phosphorylation. During Xenopus embryogenesis, maternal and zygotic tmem198 mRNAs are widely distributed in the ectoderm and mesoderm. TMEM198 is required for Wnt-mediated neural crest formation, antero-posterior patterning, and particularly engrailed-2 expression in Xenopus embryos. Thus, our results identified TMEM198 as a membrane scaffold protein that promotes LRP6 phosphorylation and Wnt signaling activation.
doi:10.1128/MCB.05103-11
PMCID: PMC3133378  PMID: 21536646
14.  The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis 
EMBO Molecular Medicine  2012;4(1):38-51.
Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.
doi:10.1002/emmm.201100186
PMCID: PMC3306557  PMID: 22147553
cancer research; glioma; RNAi; Wnt secretion; Wnt signalling
15.  A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening 
PLoS ONE  2011;6(12):e28338.
Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.
doi:10.1371/journal.pone.0028338
PMCID: PMC3230607  PMID: 22162763
16.  p24 proteins are required for secretion of Wnt ligands 
EMBO Reports  2011;12(12):1265-1272.
p24 proteins are required for secretion of Wnt ligands
Wnt proteins are signalling molecules that follow a dedicated secretory pathway. The authors here identify novel components of this pathway, providing evidence that p24 proteins act as cargo receptors in an anterograde secretory route for Wnts.
During development and disease, the exocytosis of signalling molecules, such as Wnt ligands, is essential to orchestrate cellular programs in multicellular organisms. However, it remains a largely unresolved question whether signalling molecules follow specialized transport routes through the exocytic pathway. Here we identify several Drosophila p24 proteins that are required for Wnt signalling. We demonstrate that one of these p24 proteins, namely Opossum, shuttles in the early secretory pathway, and that the Drosophila Wnt proteins are retained in the absence of p24 proteins. Our results indicate that Wnt secretion relies on a specialized anterograde secretion route with p24 proteins functioning as conserved cargo receptors.
doi:10.1038/embor.2011.212
PMCID: PMC3245698  PMID: 22094269
Wnt secretion; p24 proteins; protein transporting; signalling
17.  Extracting quantitative genetic interaction phenotypes from matrix combinatorial RNAi 
BMC Bioinformatics  2011;12:342.
Background
Systematic measurement of genetic interactions by combinatorial RNAi (co-RNAi) is a powerful tool for mapping functional modules and discovering components. It also provides insights into the role of epistasis on the way from genotype to phenotype. The interpretation of co-RNAi data requires computational and statistical analysis in order to detect interactions reliably and sensitively.
Results
We present a comprehensive approach to the analysis of univariate phenotype measurements, such as cell growth. The method is based on a quantitative model and is demonstrated on two example Drosophila cell culture data sets. We discuss adjustments for technical variability, data quality assessment, model parameter fitting and fit diagnostics, choice of scale, and assessment of statistical significance.
Conclusions
As a result, we obtain quantitative genetic interactions and interaction networks reflecting known biological relationships between target genes. The reliable extraction of presence, absence, and strength of interactions provides insights into molecular mechanisms.
doi:10.1186/1471-2105-12-342
PMCID: PMC3230910  PMID: 21849035
18.  The head-regeneration transcriptome of the planarian Schmidtea mediterranea 
Genome Biology  2011;12(8):R76.
Background
Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown.
Results
To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning.
Conclusions
Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians.
doi:10.1186/gb-2011-12-8-r76
PMCID: PMC3245616  PMID: 21846378
19.  Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen 
PLoS ONE  2011;6(2):e17173.
Background
In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation.
Results
To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER.
Conclusions
This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation.
doi:10.1371/journal.pone.0017173
PMCID: PMC3044168  PMID: 21383842
20.  A Genome-Wide RNA Interference Screen Identifies a Differential Role of the Mediator CDK8 Module Subunits for GATA/ RUNX-Activated Transcription in Drosophila▿ §  
Molecular and Cellular Biology  2010;30(11):2837-2848.
Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.
doi:10.1128/MCB.01625-09
PMCID: PMC2876525  PMID: 20368357
21.  Polymorphisms in CTNNBL1 in relation to colorectal cancer with evolutionary implications 
Colorectal cancer (CRC) is a complex disease related to environmental and genetic risk factors. Several studies have shown that susceptibility to complex diseases can be mediated by ancestral alleles. Using RNAi screening, CTNNBL1 was identified as a putative regulator of the Wnt signaling pathway, which plays a key role in colorectal carcinogenesis. Recently, single nucleotide polymorphisms (SNPs) in CTNNBL1 have been associated with obesity, a known risk factor for CRC. We investigated whether genetic variation in CTNNBL1 affects susceptibility to CRC and tested for signals of recent selection. We applied a tagging SNP approach that cover all known common variation in CTNNBL1 (allele frequency >5%; r2>0.8). A case-control study was carried out using two well-characterized study populations: a hospital-based Czech population composed of 751 sporadic cases and 755 controls and a family/early onset-based German population (697 cases and 644 controls). Genotyping was performed using allele specific PCR based TaqMan® assays (Applied Biosystems, Weiterstadt, Germany). In the Czech cohort, containing sporadic cases, the ancestral alleles of three SNPs showed evidence of association with CRC: rs2344481 (OR 1.44, 95%CI 1.06-1.95, dominant model), rs2281148 (OR 0.59, 95%CI 0.36-0.96, dominant model) and rs2235460 (OR 1.38, 95%CI 1.01-1.89, AA vs. GG). The associations were less prominent in the family/early onset-based German cohort. Data derived from several databases and statistical tests consistently pointed to a likely shaping of CTNNBL1 by positive selection. Further studies are needed to identify the actual function of CTNNBL1 and to validate the association results in other populations.
PMCID: PMC3077237  PMID: 21537400
Colorectal cancer; case-control study; ancestral-susceptibility model; selective pressure; CTNNBL1
22.  Design and evaluation of genome-wide libraries for RNA interference screens 
Genome Biology  2010;11(6):R61.
RNA interference (RNAi) screens have enabled the systematic analysis of many biological processes in cultured cells and whole organisms. The success of such screens and the interpretation of the data depend on the stringent design of RNAi libraries. We describe and validate NEXT-RNAi, a software for the automated design and evaluation of RNAi sequences on a genome-wide scale. NEXT-RNAi is implemented as open-source software and is accessible at http://www.nextrnai.org/.
doi:10.1186/gb-2010-11-6-r61
PMCID: PMC2911109  PMID: 20550664
23.  Clustering phenotype populations by genome-wide RNAi and multiparametric imaging 
How to predict gene function from phenotypic cues is a longstanding question in biology.Using quantitative multiparametric imaging, RNAi-mediated cell phenotypes were measured on a genome-wide scale.On the basis of phenotypic ‘neighbourhoods', we identified previously uncharacterized human genes as mediators of the DNA damage response pathway and the maintenance of genomic integrity.The phenotypic map is provided as an online resource at http://www.cellmorph.org for discovering further functional relationships for a broad spectrum of biological module
Genetic screens for phenotypic similarity have made key contributions for associating genes with biological processes. Aggregating genes by similarity of their loss-of-function phenotype has provided insights into signalling pathways that have a conserved function from Drosophila to human (Nusslein-Volhard and Wieschaus, 1980; Bier, 2005). Complex visual phenotypes, such as defects in pattern formation during development, greatly facilitated the classification of genes into pathways, and phenotypic similarities in many cases predicted molecular relationships. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cultured cells has become feasible in many organisms whose genome have been sequenced (Boutros and Ahringer, 2008). One of the current challenges is the computational categorization of visual phenotypes and the prediction of gene function and associated biological processes. With large parts of the genome still being in unchartered territory, deriving functional information from large-scale phenotype analysis promises to uncover novel gene–gene relationships and to generate functional maps to explore cellular processes.
In this study, we developed an automated approach using RNAi-mediated cell phenotypes, multiparametric imaging and computational modelling to obtain functional information on previously uncharacterized genes. To generate broad, computer-readable phenotypic signatures, we measured the effect of RNAi-mediated knockdowns on changes of cell morphology in human cells on a genome-wide scale. First, the several million cells were stained for nuclear and cytoskeletal markers and then imaged using automated microscopy. On the basis of fluorescent markers, we established an automated image analysis to classify individual cells (Figure 1A). After cell segmentation for determining nuclei and cell boundaries (Figure 1C), we computed 51 cell descriptors that quantified intensities, shape characteristics and texture (Figure 1F). Individual cells were categorized into 1 of 10 classes, which included cells showing protrusion/elongation, cells in metaphase, large cells, condensed cells, cells with lamellipodia and cellular debris (Figure 1D and E). Each siRNA knockdown was summarized by a phenotypic profile and differences between RNAi knockdowns were quantified by the similarity between phenotypic profiles. We termed the vector of scores a phenoprint (Figure 3C) and defined the phenotypic distance between a pair of perturbations as the distance between their corresponding phenoprints.
To visualize the distribution of all phenoprints, we plotted them in a genome-wide map as a two-dimensional representation of the phenotypic similarity relationships (Figure 3A). The complete data set and an interactive version of the phenotypic map are available at http://www.cellmorph.org. The map identified phenotypic ‘neighbourhoods', which are characterized by cells with lamellipodia (WNK3, ANXA4), cells with prominent actin fibres (ODF2, SOD3), abundance of large cells (CA14), many elongated cells (SH2B2, ELMO2), decrease in cell number (TPX2, COPB1, COPA), increase in number of cells in metaphase (BLR1, CIB2) and combinations of phenotypes such as presence of large cells with protrusions and bright nuclei (PTPRZ1, RRM1; Figure 3B).
To test whether phenotypic similarity might serve as a predictor of gene function, we focused our further analysis on two clusters that contained genes associated with the DNA damage response (DDR) and genomic integrity (Figure 3A and C). The first phenotypic cluster included proteins with kinetochore-associated functions such as NUF2 (Figure 3B) and SGOL1. It also contained the centrosomal protein CEP164 that has been described as an important mediator of the DNA damage-activated signalling cascade (Sivasubramaniam et al, 2008) and the largely uncharacterized genes DONSON and SON. A second phenotypically distinct cluster included previously described components of the DDR pathway such as RRM1 (Figure 3A–C), CLSPN, PRIM2 and SETD8. Furthermore, this cluster contained the poorly characterized genes CADM1 and CD3EAP.
Cells activate a signalling cascade in response to DNA damage induced by exogenous and endogenous factors. Central are the kinases ATM and ATR as they serve as sensors of DNA damage and activators of further downstream kinases (Harper and Elledge, 2007; Cimprich and Cortez, 2008). To investigate whether DONSON, SON, CADM1 and CD3EAP, which were found in phenotypic ‘neighbourhoods' to known DDR components, have a role in the DNA damage signalling pathway, we tested the effect of their depletion on the DDR on γ irradiation. As indicated by reduced CHEK1 phosphorylation, siRNA knock down of DONSON, SON, CD3EAP or CADM1 resulted in impaired DDR signalling on γ irradiation. Furthermore, knock down of DONSON or SON reduced phosphorylation of downstream effectors such as NBS1, CHEK1 and the histone variant H2AX on UVC irradiation. DONSON depletion also impaired recruitment of RPA2 onto chromatin and SON knockdown reduced RPA2 phosphorylation indicating that DONSON and SON presumably act downstream of the activation of ATM. In agreement to their phenotypic profile, these results suggest that DONSON, SON, CADM1 and CD3EAP are important mediators of the DDR. Further experiments demonstrated that they are also required for the maintenance of genomic integrity.
In summary, we show that genes with similar phenotypic profiles tend to share similar functions. The power of our computational and experimental approach is demonstrated by the identification of novel signalling regulators whose phenotypic profiles were found in proximity to known biological modules. Therefore, we believe that such phenotypic maps can serve as a resource for functional discovery and characterization of unknown genes. Furthermore, such approaches are also applicable for other perturbation reagents, such as small molecules in drug discovery and development. One could also envision combined maps that contain both siRNAs and small molecules to predict target–small molecule relationships and potential side effects.
Genetic screens for phenotypic similarity have made key contributions to associating genes with biological processes. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cells has become feasible. One of the current challenges however is the computational categorization of visual phenotypes and the prediction of biological function and processes. In this study, we describe a combined computational and experimental approach to discover novel gene functions and explore functional relationships. We performed a genome-wide RNAi screen in human cells and used quantitative descriptors derived from high-throughput imaging to generate multiparametric phenotypic profiles. We show that profiles predicted functions of genes by phenotypic similarity. Specifically, we examined several candidates including the largely uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric phenotyping by automated imaging and computational annotation is a powerful method for functional discovery and mapping the landscape of phenotypic responses to cellular perturbations.
doi:10.1038/msb.2010.25
PMCID: PMC2913390  PMID: 20531400
DNA damage response signalling; massively parallel phenotyping; phenotype networks; RNAi screening
24.  E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update 
Nucleic Acids Research  2010;38(Web Server issue):W332-W339.
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files.
doi:10.1093/nar/gkq317
PMCID: PMC2896145  PMID: 20444868
25.  web cellHTS2: A web-application for the analysis of high-throughput screening data 
BMC Bioinformatics  2010;11:185.
Background
The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2.
Results
The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats.
Conclusions
The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.
doi:10.1186/1471-2105-11-185
PMCID: PMC3098057  PMID: 20385013

Results 1-25 (38)