PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection 
Nature immunology  2014;16(1):67-74.
Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that SET domain bifurcated 2 (Setdb2) was the only protein lysine methyltransferase induced during influenza virus infection. Setdb2 expression depended on type-I interferon signaling and it repressed the expression of the neutrophil attractant Cxcl1 and other NF-κB target genes. This coincided with Setdb2 occupancy at the Cxcl1 promoter, which in the absence of Setdb2 displayed reduced H3K9 tri-methylation. Setdb2 hypomorphic gene-trap mice exhibited increased neutrophil infiltration in sterile lung inflammation and were less sensitive to bacterial superinfection upon influenza virus infection. This suggests that a Setdb2-mediated regulatory crosstalk between the type-I interferon and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.
doi:10.1038/ni.3046
PMCID: PMC4320687  PMID: 25419628
2.  Dendritic Polyglycerolsulfate Near Infrared Fluorescent (NIRF) Dye Conjugate for Non-Invasively Monitoring of Inflammation in an Allergic Asthma Mouse Model 
PLoS ONE  2013;8(2):e57150.
Background
Non-invasive in vivo imaging strategies are of high demand for longitudinal monitoring of inflammation during disease progression. In this study we present an imaging approach using near infrared fluorescence (NIRF) imaging in combination with a polyanionic macromolecular conjugate as a dedicated probe, known to target L- and P-selectin and C3/C5 complement factors.
Methodology/Principal Findings
We investigated the suitability of dendritic polyglycerol sulfates (dPGS), conjugated with a hydrophilic version of the indocyanine green label with 6 sulfonate groups (6S-ICG) to monitor sites of inflammation using an experimental mouse model of allergic asthma. Accumulation of the NIRF-conjugated dPGS (dPGS-NIRF) in the inflamed lungs was analyzed in and ex vivo in comparison with the free NIRF dye using optical imaging. Commercially available smart probes activated by matrix metalloproteinase's (MMP) and cathepsins were used as a comparative control. The fluorescence intensity ratio between lung areas of asthmatic and healthy mice was four times higher for the dPGS in comparison to the free dye in vivo at four hrs post intravenous administration. No significant difference in fluorescence intensity between healthy and asthmatic mice was observed 24 hrs post injection for dPGS-NIRF. At this time point ex-vivo scans of asthmatic mice confirmed that the fluorescence within the lungs was reduced to approximately 30% of the intensity observed at 4 hrs post injection.
Conclusions/Significance
Compared with smart-probes resulting in a high fluorescence level at 24 hrs post injection optical imaging with dPGS-NIRF conjugates is characterized by fast uptake of the probe at inflammatory sites and represents a novel approach to monitor lung inflammation as demonstrated in mice with allergic asthma.
doi:10.1371/journal.pone.0057150
PMCID: PMC3578827  PMID: 23437332
3.  Treatment of allergic asthma: Modulation of Th2 cells and their responses 
Respiratory Research  2011;12(1):114.
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
doi:10.1186/1465-9921-12-114
PMCID: PMC3179723  PMID: 21867534

Results 1-3 (3)