Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Selective spider toxins reveal a role for Nav1.1 channel in mechanical pain 
Nature  2016;534(7608):494-499.
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibers of the pain pathway. Local anesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes and their contributions to chemical, mechanical, or thermal pain. Here, we identify and characterize spider toxins that selectively activate the Nav1.1 subtype, whose role in nociception and pain has not been explored. We exploit these probes to demonstrate that Nav1.1-expressing fibers are modality-specific nociceptors: their activation elicits robust pain behaviors without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibers also express Nav1.1 and show enhanced toxin sensitivity in a model of irritable bowel syndrome. Altogether, these findings establish an unexpected role for Nav1.1 in regulating the excitability of sensory nerve fibers that underlie mechanical pain.
PMCID: PMC4919188  PMID: 27281198
2.  Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami 
Scientific Reports  2016;6:29538.
The inexorable decline in the armament of registered chemical insecticides has stimulated research into environmentally-friendly alternatives. Insecticidal spider-venom peptides are promising candidates for bioinsecticide development but it is challenging to find peptides that are specific for targeted pests. In the present study, we isolated an insecticidal peptide (Ae1a) from venom of the African spider Augacephalus ezendami (family Theraphosidae). Injection of Ae1a into sheep blowflies (Lucilia cuprina) induced rapid but reversible paralysis. In striking contrast, Ae1a was lethal to closely related fruit flies (Drosophila melanogaster) but induced no adverse effects in the recalcitrant lepidopteran pest Helicoverpa armigera. Electrophysiological experiments revealed that Ae1a potently inhibits the voltage-gated sodium channel BgNaV1 from the German cockroach Blattella germanica by shifting the threshold for channel activation to more depolarized potentials. In contrast, Ae1a failed to significantly affect sodium currents in dorsal unpaired median neurons from the American cockroach Periplaneta americana. We show that Ae1a interacts with the domain II voltage sensor and that sensitivity to the toxin is conferred by natural sequence variations in the S1–S2 loop of domain II. The phyletic specificity of Ae1a provides crucial information for development of sodium channel insecticides that target key insect pests without harming beneficial species.
PMCID: PMC4935840  PMID: 27383378
3.  The hitchhiker’s guide to the voltage-gated sodium channel galaxy 
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
PMCID: PMC4692491  PMID: 26712848
4.  Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach 
British Journal of Pharmacology  2015;172(10):2445-2458.
Background and Purpose
Chronic pain is a serious worldwide health issue, with current analgesics having limited efficacy and dose-limiting side effects. Humans with loss-of-function mutations in the voltage-gated sodium channel NaV1.7 (hNaV1.7) are indifferent to pain, making hNaV1.7 a promising target for analgesic development. Since spider venoms are replete with NaV channel modulators, we examined their potential as a source of hNaV1.7 inhibitors.
Experimental Approach
We developed a high-throughput fluorescent-based assay to screen spider venoms against hNaV1.7 and isolate ‘hit’ peptides. To examine the binding site of these peptides, we constructed a panel of chimeric channels in which the S3b-S4 paddle motif from each voltage sensor domain of hNaV1.7 was transplanted into the homotetrameric KV2.1 channel.
Key Results
We screened 205 spider venoms and found that 40% contain at least one inhibitor of hNaV1.7. By deconvoluting ‘hit’ venoms, we discovered seven novel members of the NaSpTx family 1. One of these peptides, Hd1a (peptide μ-TRTX-Hd1a from venom of the spider Haplopelma doriae), inhibited hNaV1.7 with a high level of selectivity over all other subtypes, except hNaV1.1. We showed that Hd1a is a gating modifier that inhibits hNaV1.7 by interacting with the S3b-S4 paddle motif in channel domain II. The structure of Hd1a, determined using heteronuclear NMR, contains an inhibitor cystine knot motif that is likely to confer high levels of chemical, thermal and biological stability.
Conclusion and Implications
Our data indicate that spider venoms are a rich natural source of hNaV1.7 inhibitors that might be useful leads for the development of novel analgesics.
PMCID: PMC4409898  PMID: 25754331
5.  Binary architecture of the Nav1.2-β2 signaling complex 
eLife  null;5:e10960.
To investigate the mechanisms by which β-subunits influence Nav channel function, we solved the crystal structure of the β2 extracellular domain at 1.35Å. We combined these data with known bacterial Nav channel structural insights and novel functional studies to determine the interactions of specific residues in β2 with Nav1.2. We identified a flexible loop formed by 72Cys and 75Cys, a unique feature among the four β-subunit isoforms. Moreover, we found that 55Cys helps to determine the influence of β2 on Nav1.2 toxin susceptibility. Further mutagenesis combined with the use of spider toxins reveals that 55Cys forms a disulfide bond with 910Cys in the Nav1.2 domain II pore loop, thereby suggesting a 1:1 stoichiometry. Our results also provide clues as to which disulfide bonds are formed between adjacent Nav1.2 912/918Cys residues. The concepts emerging from this work will help to form a model reflecting the β-subunit location in a Nav channel complex.
eLife digest
Our bodies run on electricity. The brain, heart and some other organs depend on small electrical signals that are generated by ions moving through specialized protein complexes that sit in the membrane surrounding a cell. One of these channels is a ‘sodium channel’, through which positively charged sodium ions move. Tiny changes in the structure of the sodium channel can cause severe conditions such as epilepsy and heart arrhythmias, so it is crucial that we know how it works
Sodium channels consist of different protein building blocks (called α and β) and it was not known exactly how these come together to form the full channel complex. However, previous studies hinted at which parts of the β building block make contact with the α protein.
Now, Das, Gilchrist et al. have been able to visualize the three-dimensional structure of the β building block of the sodium channel in extremely high detail by using a technique called X-ray crystallography. The level of detail in the structure also allowed the amino acids that make up the β building block to be identified.
Das, Gilchrist et al. then altered some of the amino acids in the sodium channel, and treated frog cells containing the mutant channel with a spider toxin that binds between the α and β building blocks. This revealed the location and identity of the exact contact points between the proteins. In the future, a full three-dimensional structure showing the α and β subunits bound together would yield invaluable information on how they cooperate to form the sodium channel complex and give insights into mutations that cause cardiac arrhythmias and epilepsy.
PMCID: PMC4769172  PMID: 26894959
voltage-gated sodium channel; beta2 subunit; scn2b; spider toxin; X-ray structure; disulfide; E. coli; Xenopus
6.  From foe to friend: using animal toxins to investigate ion channel function 
Journal of molecular biology  2014;427(1):158-175.
Ion channels are vital contributors to cellular communication in a wide range of organisms, a distinct feature that renders this ubiquitous family of membrane-spanning proteins a prime target for toxins found in animal venom. For many years, the unique properties of these naturally-occurring molecules have enabled researchers to probe the structural and functional features of ion channels and to define their physiological roles in normal and diseased tissues. To illustrate their considerable impact on the ion channel field, this review will highlight fundamental insights into toxin-channel interactions as well as recently developed toxin screening methods and practical applications of engineered toxins.
PMCID: PMC4277912  PMID: 25088688
Animal toxin; Voltage-gated ion channel; Transient receptor potential channel; Toxin engineering; Screening approaches
7.  A surface plasmon resonance approach to monitor toxin interactions with an isolated voltage-gated sodium channel paddle motif 
The Journal of General Physiology  2015;145(2):155-162.
The isolated Nav channel domain IV paddle motif remains susceptible to toxins that inhibit fast inactivation.
Animal toxins that inhibit voltage-gated sodium (Nav) channel fast inactivation can do so through an interaction with the S3b–S4 helix-turn-helix region, or paddle motif, located in the domain IV voltage sensor. Here, we used surface plasmon resonance (SPR), an optical approach that uses polarized light to measure the refractive index near a sensor surface to which a molecule of interest is attached, to analyze interactions between the isolated domain IV paddle and Nav channel–selective α-scorpion toxins. Our SPR analyses showed that the domain IV paddle can be removed from the Nav channel and immobilized on sensor chips, and suggest that the isolated motif remains susceptible to animal toxins that target the domain IV voltage sensor. As such, our results uncover the inherent pharmacological sensitivities of the isolated domain IV paddle motif, which may be exploited to develop a label-free SPR approach for discovering ligands that target this region.
PMCID: PMC4306711  PMID: 25624450
8.  The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening 
PLoS ONE  2015;10(6):e0128578.
We identified Tf2, the first β-scorpion toxin from the venom of the Brazilian scorpion Tityus fasciolatus. Tf2 is identical to Tb2-II found in Tityus bahiensis. We found that Tf2 selectively activates human (h)Nav1.3, a neuronal voltage-gated sodium (Nav) subtype implicated in epilepsy and nociception. Tf2 shifts hNav1.3 activation voltage to more negative values, thereby opening the channel at resting membrane potentials. Seven other tested mammalian Nav channels (Nav1.1-1.2; Nav1.4-1.8) expressed in Xenopus oocytes are insensitive upon application of 1 μM Tf2. Therefore, the identification of Tf2 represents a unique addition to the repertoire of animal toxins that can be used to investigate Nav channel function.
PMCID: PMC4470819  PMID: 26083731
9.  Nav1.1 Modulation by a Novel Triazole Compound Attenuates Epileptic Seizures in Rodents 
ACS Chemical Biology  2014;9(5):1204-1212.
Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure–activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects.
PMCID: PMC4027953  PMID: 24635129
10.  A first exploration of the venom of the Buthus occitanus scorpion found in southern France 
Even though Buthus occitanus scorpions are found throughout the Mediterranean region, a lack of distinctive characteristics has hampered their classification into different subspecies. Yet, stings from this particular scorpion family are reported each year to result in pain followed by various toxic symptoms. In order to determine the toxicity origin of the rare French Buthus occitanus Amoreux scorpion, we collected several specimens and studied their venom composition using a nano ultra high performance liquid chromatography and matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (nano UHPLC/MALDI-TOF-MS) automated workflow combined with an enzyme-linked immunosorbent assay (ELISA) approach. Moreover, we compared this dataset to that obtained from highly lethal Androctonus australis and Androctonus mauretanicus scorpions collected in North Africa. As a result, we found that the Buthus occitanus Amoreux venom is toxic to mice, an observation that is most likely caused by venom components that inhibit voltage-gated sodium channel inactivation. Moreover, we identified similarities in venom composition between Buthus occitanus scorpions living in the South of France and other Buthidae collected in Morocco and Algeria. As such, the results of this study should be taken into consideration when treating stings from the Buthus occitanus species living in the South of France.
PMCID: PMC3952629  PMID: 24418174
scorpion toxins; MALDI-TOF/MS; ionic channels; ELISA
11.  A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a 
Nature communications  2014;5:4350.
β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1–S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, aconcept that will be valuable for the design of insect-selective insecticides.
PMCID: PMC4115291  PMID: 25014760
voltage-gated sodium channel; voltage sensor; spider toxin; Dc1a; insect; cockroach
12.  The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels 
Biochemical pharmacology  2013;85(10):10.1016/j.bcp.2013.02.030.
One of the most potent insecticidal venom peptides described to date is Aps III from the venom of the trapdoor spider Apomastus schlingeri. Aps III is highly neurotoxic to lepidopteran crop pests, making it a promising candidate for bioinsecticide development. However, its disulfide-connectivity, three-dimensional structure, and mode of action have not been determined. Here we show that recombinant Aps III (rAps III) is an atypical knottin peptide; three of the disulfide bridges form a classical inhibitor cystine knot motif while the fourth disulfide acts as a molecular staple that restricts the flexibility of an unusually large β hairpin loop that often houses the pharmacophore in this class of toxins. We demonstrate that the irreversible paralysis induced in insects by rAps III results from a potent block of insect voltage-gated sodium channels. Channel block by rAps III is voltage-independent insofar as it occurs without significant alteration in the voltage-dependence of channel activation or steady-state inactivation. Thus, rAps III appears to be a pore blocker that plugs the outer vestibule of insect voltage-gated sodium channels. This mechanism of action contrasts strikingly with virtually all other sodium channel modulators isolated from spider venoms that act as gating modifiers by interacting with one or more of the four voltage-sensing domains of the channel.
PMCID: PMC3654253  PMID: 23473802
voltage-gated sodium channel; neurotoxin; spider-venom peptide; pore blocker; gating modifier; inhibitor cystine knot
13.  Animal Toxins Can Alter the Function of Nav1.8 and Nav1.9 
Toxins  2012;4(8):620-632.
Human voltage-activated sodium (Nav) channels are adept at rapidly transmitting electrical signals across long distances in various excitable tissues. As such, they are amongst the most widely targeted ion channels by drugs and animal toxins. Of the nine isoforms, Nav1.8 and Nav1.9 are preferentially expressed in DRG neurons where they are thought to play an important role in pain signaling. Although the functional properties of Nav1.8 have been relatively well characterized, difficulties with expressing Nav1.9 in established heterologous systems limit our understanding of the gating properties and toxin pharmacology of this particular isoform. This review summarizes our current knowledge of the role of Nav1.8 and Nav1.9 in pain perception and elaborates on the approaches used to identify molecules capable of influencing their function.
PMCID: PMC3446747  PMID: 23012651
Nav1.8; Nav1.9; pain; animal toxins; voltage sensor; voltage-activated sodium channel
14.  Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors 
The voltage-activated sodium (Nav) channel Nav1.9 is expressed in dorsal root ganglion (DRG) neurons where it is believed to play an important role in nociception. Progress in revealing the functional properties and pharmacological sensitivities of this non-canonical Nav channel has been slow because attempts to express this channel in a heterologous expression system have been unsuccessful. Here, we use a protein engineering approach to dissect the contributions of the four Nav1.9 voltage sensors to channel function and pharmacology. We define individual S3b–S4 paddle motifs within each voltage sensor, and show that they can sense changes in membrane voltage and drive voltage sensor activation when transplanted into voltage-activated potassium channels. We also find that the paddle motifs in Nav1.9 are targeted by animal toxins, and that these toxins alter Nav1.9-mediated currents in DRG neurons. Our results demonstrate that slowly activating and inactivating Nav1.9 channels have functional and pharmacological properties in common with canonical Nav channels, but also show distinctive pharmacological sensitivities that can potentially be exploited for developing novel treatments for pain.
PMCID: PMC3135324  PMID: 21670206
15.  Targeting sodium channel voltage sensors with spider toxins 
Voltage-activated sodium (Nav) channels are essential in generating and propagating nerve impulses, placing them amongst the most widely targeted ion channels by toxins from venomous organisms. An increasing number of spider toxins have been shown to interfere with the voltage-driven activation process of mammalian Nav channels, possibly by interacting with one or more of their voltage sensors. This review focuses on our existing knowledge of the mechanism by which spider toxins affect Nav channel gating and the possible applications of these toxins in the drug discovery process.
PMCID: PMC2847040  PMID: 20097434
16.  Interactions between lipids and voltage sensor paddles detected with tarantula toxins 
Nature structural & molecular biology  2009;16(10):1080-1085.
Voltage-activated ion channels open and close in response to changes in voltage, a property that is essential for generating nerve impulses. Studies on voltage-activated potassium (Kv) channels show that voltage-sensor activation is sensitive to the composition of lipids in the surrounding membrane. Here we explore the interaction of lipids with S1–S4 voltage-sensing domains, and find that the conversion of the membrane lipid sphingomyelin to ceramide-1-phosphate alters voltage-sensor activation in an S1–S4 voltage-sensing protein lacking an associated pore domain, and that the S3b–S4 paddle motif determines the effects of lipid modification on Kv channels. Using tarantula toxins that bind to paddle motifs within the membrane, we identify mutations in the paddle motif that weaken toxin binding by disrupting lipid-paddle interactions. Our results suggest that lipids bind to voltage-sensing domains and demonstrate that the pharmacological sensitivities of voltage-activated ion channels are influenced by the surrounding lipid membrane.
PMCID: PMC2782670  PMID: 19783984
17.  Deconstructing voltage sensor function and pharmacology in sodium channels 
Nature  2008;456(7219):202-208.
Voltage-activated sodium (Nav) channels are crucial for the generation and propagation of nerve impulses, and as such are amongst the most widely targeted ion channels by toxins and drugs. The four voltage sensors in Nav channels have distinct amino acid sequences, raising fundamental questions about their relative contributions to the function and pharmacology of the channel. Here we use four-fold symmetric voltage-activated potassium (Kv) channels as reporters to examine the contributions of individual Nav channel S3b-S4 paddle motifs to the kinetics of voltage sensor activation and to forming toxin receptors. Our results uncover binding sites for toxins from tarantula and scorpion venom on each of the four paddle motifs in Nav channels and reveal how paddle-specific interactions can be used to reshape Nav channel activity. One paddle motif is unique in that it slows voltage sensor activation and toxins selectively targeting this motif impede Nav channel inactivation. This reporter approach and the principles that emerge will be useful in developing new drugs for treating pain and Nav channelopathies.
PMCID: PMC2587061  PMID: 19005548
18.  Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels 
Sea anemones produce a myriad of toxic peptides and proteins of which a large group acts on voltage-gated Na+ channels. However, in comparison to other organisms, their venoms and toxins are poorly studied. Most of the known voltage-gated Na+ channel toxins isolated from sea anemone venoms act on neurotoxin receptor site 3 and inhibit the inactivation of these channels. Furthermore, it seems that most of these toxins have a distinct preference for crustaceans. Given the close evolutionary relationship between crustaceans and insects, it is not surprising that sea anemone toxins also profoundly affect insect voltage-gated Na+ channels, which constitutes the scope of this review. For this reason, these peptides can be considered as insecticidal lead compounds in the development of insecticides.
PMCID: PMC1868498  PMID: 17224168
19.  Differential effects of five ‘classical’ scorpion β-toxins on rNav1.2a and DmNav1 provide clues on species-selectivity 
In general, scorpion β-toxins have been well examined. However, few in-depth studies have been devoted to species selectivity and affinity comparisons on the different voltage-activated Na+ channels since they have become available as cloned channels that can be studied in heterologous expression systems. As a result, their classification is largely historical and dates from early in vivo experiments on mice and cockroach and fly larvae.
In this study, we aimed to provide an updated overview of selectivity and affinity of scorpion β-toxins towards voltage-activated Na+ channels of vertebrates or invertebrates. As pharmacological tools, we used the classic β-toxins AaHIT, Css II, Css IV, Css VI and Ts VII and tested them on the neuronal vertebrate voltage-activated Na+ channel, rNav1.2a. For comparison, its invertebrate counterpart, DmNav1, was also tested. Both these channels were expressed in Xenopus laevis oocytes and the currents measured with the two-electrode voltage-clamp technique. We supplemented this data with several binding displacement studies on rat brain synaptosomes. The results lead us to propose a general classification and a novel nomenclature of scorpion β-toxins based on pharmacological activity.
PMCID: PMC1868420  PMID: 17118417
scorpion β-toxins; voltage-activated Na+ channels; species-selectivity; Centruroides suffusus suffusus; Androctonus australis Hector
20.  Voltage-gated sodium channel modulation by scorpion α-toxins 
Voltage-gated Na+ channels are integral membrane proteins that function as a gateway for a selective permeation of sodium ions across biological membranes. In this way, they are crucial players for the generation of action potentials in excitable cells. Voltage-gated Na+ channels are encoded by at least nine genes in mammals. The different isoforms have remarkably similar functional properties, but small changes in function and pharmacology are biologically well-defined, as underscored by mutations that cause several diseases and by modulation of a myriad of compounds respectively. This review will stress on the modulation of voltage-gated Na+ channels by scorpion alpha-toxins. Nature has designed these two classes of molecules as if they were predestined to each other: an inevitable ‘encounter’ between a voltage-gated Na+ channel isoform and an alpha-toxin from scorpion venom indeed results in a dramatically changed Na+ current phenotype with clear-cut consequences on electrical excitability and sometimes life or death. This fascinating aspect justifies an overview on scorpion venoms, their alpha-toxins and the Na+ channel targets they are built for, as well as on the molecular determinants that govern the selectivity and affinity of this ‘inseparable duo’.
PMCID: PMC1808227  PMID: 17087986

Results 1-20 (20)