PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  How Good is Automated Protein Docking? 
Proteins  2013;81(12):2159-2166.
The protein docking server ClusPro has been participating in CAPRI since its introduction in 2004. This paper evaluates the performance of ClusPro 2.0 for targets 46–58 in rounds 22–27 of CAPRI. The analysis leads to a number of important observations. First, ClusPro reliably yields acceptable or medium accuracy models for targets of moderate difficulty that have also been successfully predicted by other groups, and fails only for targets that have few acceptable models submitted. Second, the quality of automated docking by ClusPro is very close to that of the best human predictor groups, including our own submissions. This is very important, because servers have to submit results within 48 hours and the predictions should be reproducible, whereas human predictors have several weeks and can use any type of information. Third, while we refined the ClusPro results for manual submission by running computationally costly Monte Carlo minimization simulations, we observed significant improvement in accuracy only for two of the six complexes correctly predicted by ClusPro. Fourth, new developments, not seen in previous rounds of CAPRI, are that the top ranked model provided by ClusPro was acceptable or better quality for all these six targets, and that the top ranked model was also the highest quality for five of the six, confirming that ranking models based on cluster size can reliably identify the best near-native conformations.
doi:10.1002/prot.24403
PMCID: PMC3934018  PMID: 23996272
protein-protein docking; structure refinement; method development; CAPRI docking experiment; web based server; user community
2.  Detection of peptide-binding sites on protein surfaces: The first step towards the modeling and targeting of peptide-mediated interactions 
Proteins  2013;81(12):2096-2105.
Peptide-mediated interactions, in which a short linear motif binds to a globular domain, play major roles in cellular regulation. An accurate structural model of this type of interaction is an excellent starting point for the characterization of the binding specificity of a given peptide-binding domain. A number of different protocols have recently been proposed for the accurate modeling of peptide-protein complex structures, given the structure of the protein receptor and the binding site on its surface. When no information about the peptide binding site(s) is a priori available, there is a need for new approaches to locate peptide-binding sites on the protein surface. While several approaches have been proposed for the general identification of ligand binding sites, peptides show very specific binding characteristics, and therefore, there is a need for robust and accurate approaches that are optimized for the prediction of peptide-binding sites.
Here we present PeptiMap, a protocol for the accurate mapping of peptide binding sites on protein structures. Our method is based on experimental evidence that peptide-binding sites also bind small organic molecules of various shapes and polarity. Using an adaptation of ab initio ligand binding site prediction based on fragment mapping (FTmap), we optimize a protocol that specifically takes into account peptide binding site characteristics. In a high-quality curated set of peptide-protein complex structures PeptiMap identifies for most the accurate site of peptide binding among the top ranked predictions. We anticipate that this protocol will significantly increase the number of accurate structural models of peptide-mediated interactions.
doi:10.1002/prot.24422
PMCID: PMC4183195  PMID: 24123488
protein peptide interactions; FFT sampling; binding site detection; mapping; PeptiDB
3.  Evidence of Conformational Selection Driving the Formation of Ligand Binding Sites in Protein-Protein Interfaces 
PLoS Computational Biology  2014;10(10):e1003872.
Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the surface of proteins by docking a large number of small “probe” molecules. Although we consider conformational ensembles obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition, which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be targeted by small ligands always includes conformational selection, although other recognition mechanisms may also be involved.
Author Summary
Many protein-protein interfaces (PPIs) are biologically compelling drug targets. Disrupting the interaction between two large proteins by a small inhibitor requires forming a high affinity binding site in the interface that generally can bind both peptides and drug-like compounds. Here we investigate whether such sites are induced by peptide or ligand binding, or already exist in the unbound state. The analysis requires comparing ligand-free and ligand-bound structures. To avoid any potential bias, we study ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR) rather than generated by simulations. The analysis is based on computational solvent mapping, which explores the surface of the target protein by docking a large number of small “probe” molecules. Results show that ensembles of ligand-free models always include conformations that are fairly similar to some peptide-bound or ligand-bound structure in terms of the properties of the binding site. The analysis also identifies the models that are the most similar to a bound state, and shows the maximum level of similarity that is achieved without any influence from a ligand. While forming the binding site may require a combination of recognition mechanisms, there is preference for the spontaneous formation of bound-like structures.
doi:10.1371/journal.pcbi.1003872
PMCID: PMC4183424  PMID: 25275445
4.  Application of asymmetric statistical potentials to antibody–protein docking 
Bioinformatics  2012;28(20):2608-2614.
Motivation: An effective docking algorithm for antibody–protein antigen complex prediction is an important first step toward design of biologics and vaccines. We have recently developed a new class of knowledge-based interaction potentials called Decoys as the Reference State (DARS) and incorporated DARS into the docking program PIPER based on the fast Fourier transform correlation approach. Although PIPER was the best performer in the latest rounds of the CAPRI protein docking experiment, it is much less accurate for docking antibody–protein antigen pairs than other types of complexes, in spite of incorporating sequence-based information on the location of the paratope. Analysis of antibody–protein antigen complexes has revealed an inherent asymmetry within these interfaces. Specifically, phenylalanine, tryptophan and tyrosine residues highly populate the paratope of the antibody but not the epitope of the antigen.
Results: Since this asymmetry cannot be adequately modeled using a symmetric pairwise potential, we have removed the usual assumption of symmetry. Interaction statistics were extracted from antibody–protein complexes under the assumption that a particular atom on the antibody is different from the same atom on the antigen protein. The use of the new potential significantly improves the performance of docking for antibody–protein antigen complexes, even without any sequence information on the location of the paratope. We note that the asymmetric potential captures the effects of the multi-body interactions inherent to the complex environment in the antibody–protein antigen interface.
Availability: The method is implemented in the ClusPro protein docking server, available at http://cluspro.bu.edu.
Contact: midas@bu.edu or vajda@bu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts493
PMCID: PMC3467743  PMID: 23053206
5.  Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde 
Nucleic Acids Research  2012;40(16):7644-7652.
Formaldehyde has long been recognized as a hazardous environmental agent highly reactive with DNA. Recently, it has been realized that due to the activity of histone demethylation enzymes within the cell nucleus, formaldehyde is produced endogenously, in direct vicinity of genomic DNA. Should it lead to extensive DNA damage? We address this question with the aid of a computational mapping method, analogous to X-ray and nuclear magnetic resonance techniques for observing weakly specific interactions of small organic compounds with a macromolecule in order to establish important functional sites. We concentrate on the leading reaction of formaldehyde with free bases: hydroxymethylation of cytosine amino groups. Our results show that in B-DNA, cytosine amino groups are totally inaccessible for the formaldehyde attack. Then, we explore the effect of recently discovered transient flipping of Watson–Crick (WC) pairs into Hoogsteen (HG) pairs (HG breathing). Our results show that the HG base pair formation dramatically affects the accessibility for formaldehyde of cytosine amino nitrogens within WC base pairs adjacent to HG base pairs. The extensive literature on DNA interaction with formaldehyde is analyzed in light of the new findings. The obtained data emphasize the significance of DNA HG breathing.
doi:10.1093/nar/gks519
PMCID: PMC3439909  PMID: 22705795
6.  FTMAP: extended protein mapping with user-selected probe molecules 
Nucleic Acids Research  2012;40(Web Server issue):W271-W275.
Binding hot spots, protein sites with high-binding affinity, can be identified using X-ray crystallography or NMR by screening libraries of small organic molecules that tend to cluster at such regions. FTMAP, a direct computational analog of the experimental screening approaches, globally samples the surface of a target protein using small organic molecules as probes, finds favorable positions, clusters the conformations and ranks the clusters on the basis of the average energy. The regions that bind several probe clusters predict the binding hot spots, in good agreement with experimental results. Small molecules discovered by fragment-based approaches to drug design also bind at the hot spot regions. To identify such molecules and their most likely bound positions, we extend the functionality of FTMAP (http://ftmap.bu.edu/param) to accept any small molecule as an additional probe. In its updated form, FTMAP identifies the hot spots based on a standard set of probes, and for each additional probe shows representative structures of nearby low energy clusters. This approach helps to predict bound poses of the user-selected molecules, detects if a compound is not likely to bind in the hot spot region, and provides input for the design of larger ligands.
doi:10.1093/nar/gks441
PMCID: PMC3394268  PMID: 22589414

Results 1-6 (6)