Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system 
Nucleic Acids Research  2015;44(2):790-800.
Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level.
PMCID: PMC4737168  PMID: 26687717
2.  Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli 
Molecular microbiology  2010;77(6):1367-1379.
CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently “silent” E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.
PMCID: PMC2939963  PMID: 20624226
3.  Regulation of gene expression in restriction-modification system Eco29kI 
Nucleic Acids Research  2011;39(11):4653-4663.
The Eco29kI restriction-modification (R-M) system consists of two partially overlapping genes, eco29kIR, encoding a restriction endonuclease and eco29kIM, encoding methyltransferase. The two genes are thought to form an operon with the eco29kIR gene preceding the eco29kIM gene. Such an organization is expected to complicate establishment of plasmids containing this R-M system in naive hosts, since common logic dictates that methyltransferase should be synthesized first to protect the DNA from cleavage by the endonuclease. Here, we characterize the Eco29kI gene transcription. We show that a separate promoter located within the eco29kIR gene is sufficient to synthesize enough methyltransferase to completely modify host DNA. We further show that transcription from two intragenic antisense promoters strongly decreases the levels of eco29kIR gene transcripts. The antisense transcripts act by preventing translation initiation from the bicistronic eco29kIR–eco29kIM mRNA and causing its degradation. Both eco29kIM and antisense promoters are necessary for Eco29kI genes establishment and/or stable maintenance, indicating that they jointly contribute to coordinated expression of Eco29kI genes.
PMCID: PMC3113576  PMID: 21310712
4.  Transcription regulation of restriction-modification system Esp1396I 
Nucleic Acids Research  2009;37(10):3354-3366.
The convergently transcribed restriction (R) and methylase (M) genes of the Restriction–Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I in vivo and in vitro. C-protein binding at the CR and M promoters was analyzed by DNA footprinting and a range of biophysical techniques. The distal and proximal C-protein binding sites at the CR promoter are responsible for activation and repression, respectively. In contrast, a C-protein dimer binds to a single site at the M-promoter to repress the gene, with an affinity much greater than for the CR promoter. Thus, during establishment of the system in a naïve host, the activity of the M promoter is turned off early, preventing excessive synthesis of methylase. Mutational analysis of promoter binding sites reveals that the tetranucleotide inverted repeats long believed to be important for C-protein binding to DNA are less significant than previously thought. Instead, symmetry-related elements outside of these repeats appear to be critical for the interaction and are discussed in terms of the recent crystal structure of C.Esp139I bound to the CR promoter.
PMCID: PMC2691842  PMID: 19336410
5.  Transcription regulation of the type II restriction-modification system AhdI 
Nucleic Acids Research  2008;36(5):1429-1442.
The Restriction-modification system AhdI contains two convergent transcription units, one with genes encoding methyltransferase subunits M and S and another with genes encoding the controller (C) protein and the restriction endonuclease (R). We show that AhdI transcription is controlled by two independent regulatory loops that are well-optimized to ensure successful establishment in a naïve bacterial host. Transcription from the strong MS promoter is attenuated by methylation of an AhdI site overlapping the -10 element of the promoter. Transcription from the weak CR promoter is regulated by the C protein interaction with two DNA-binding sites. The interaction with the promoter-distal high-affinity site activates transcription, while interaction with the weaker promoter-proximal site represses it. Because of high levels of cooperativity, both C protein-binding sites are always occupied in the absence of RNA polymerase, raising a question how activated transcription is achieved. We develop a mathematical model that is in quantitative agreement with the experiment and indicates that RNA polymerase outcompetes C protein from the promoter-proximal-binding site. Such an unusual mechanism leads to a very inefficient activation of the R gene transcription, which presumably helps control the level of the endonuclease in the cell.
PMCID: PMC2275141  PMID: 18203750
6.  Type II restriction endonuclease R.Eco29kI is a member of the GIY-YIG nuclease superfamily 
The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally.
Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme.
Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.
PMCID: PMC1952068  PMID: 17626614
7.  Transcription regulation of the EcoRV restriction–modification system 
Nucleic Acids Research  2005;33(21):6942-6951.
When a plasmid containing restriction–modification (R–M) genes enters a naïve host, unmodified host DNA can be destroyed by restriction endonuclease. Therefore, expression of R–M genes must be regulated to ensure that enough methyltransferase is produced and that host DNA is methylated before the endonuclease synthesis begins. In several R–M systems, specialized Control (C) proteins coordinate expression of the R and the M genes. C proteins bind to DNA sequences called C-boxes and activate expression of their cognate R genes and inhibit the M gene expression, however the mechanisms remain undefined. Here, we studied the regulation of gene expression in the C protein-dependent EcoRV system. We map the divergent EcoRV M and R gene promoters and we define the site of C protein-binding that is sufficient for activation of the EcoRV R transcription.
PMCID: PMC1310966  PMID: 16332697
8.  Simple cDNA normalization using kamchatka crab duplex-specific nuclease 
Nucleic Acids Research  2004;32(3):e37.
We developed a novel simple cDNA normalization method [termed duplex-specific nuclease (DSN) normalization] that may be effectively used for samples enriched with full-length cDNA sequences. DSN normalization involves the denaturation–reassociation of cDNA, degradation of the double-stranded (ds) fraction formed by abundant transcripts and PCR amplification of the equalized single-stranded (ss) DNA fraction. The key element of this method is the degradation of the ds fraction formed during reassociation of cDNA using the kamchatka crab DSN, as described recently. This thermostable enzyme displays a strong preference for cleaving ds DNA and DNA in DNA–RNA hybrid duplexes compared with ss DNA and RNA, irrespective of sequence length. We developed normalization protocols for both first-strand cDNA [when poly(A)+ RNA is available] and amplified cDNA (when only total RNA can be obtained). Both protocols were evaluated in model experiments using human skeletal muscle cDNA. We also employed DSN normalization to normalize cDNA from nervous tissues of the marine mollusc Aplysia californica (a popular model organism in neuroscience) to illustrate further the efficiency of the normalization technique.
PMCID: PMC373426  PMID: 14973331
9.  Complete genome sequence of a novel extrachromosomal virus-like element identified in planarian Girardia tigrina 
BMC Genomics  2002;3:15.
Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research.
Using a combination of Suppression Subtractive Hybridization (SSH) and Mirror Orientation Selection (MOS), we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element) was identified in one planarian strain. The PEVE genome (about 7.5 kb) consists of two unique regions (Ul and Us) flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep), and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body.
PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.
PMCID: PMC116598  PMID: 12065025

Results 1-9 (9)