PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Crystallographic and molecular dynamics simulation analysis of Escherichia coli dihydroneopterin aldolase 
Cell & Bioscience  2014;4(1):52.
Background
Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin to 6-hydroxymethyl-7,8-dihydropterin and also the epimerization of DHNP to 7,8-dihydromonapterin. Previously, we determined the crystal structure of Staphylococcus aureus DHNA (SaDHNA) in complex with the substrate analogue neopterin (NP). We also showed that Escherichia coli DHNA (EcDHNA) and SaDHNA have significantly different binding and catalytic properties by biochemical analysis. On the basis of these structural and functional data, we proposed a catalytic mechanism involving two proton wires.
Results
To understand the structural basis for the biochemical differences and further investigate the catalytic mechanism of DHNA, we have determined the structure of EcDHNA complexed with NP at 1.07-Å resolution [PDB:2O90], built an atomic model of EcDHNA complexed with the substrate DHNP, and performed molecular dynamics (MD) simulation analysis of the substrate complex. EcDHNA has the same fold as SaDHNA and also forms an octamer that consists of two tetramers, but the packing of one tetramer with the other is significantly different between the two enzymes. Furthermore, the structures reveal significant differences in the vicinity of the active site, particularly in the loop that connects strands β3 and β4, mainly due to the substitution of nearby residues. The building of an atomic model of the complex of EcDHNA and the substrate DHNP and the MD simulation of the complex show that some of the hydrogen bonds between the substrate and the enzyme are persistent, whereas others are transient. The substrate binding model and MD simulation provide the molecular basis for the biochemical behaviors of the enzyme, including noncooperative substrate binding, indiscrimination of a pair of epimers as the substrates, proton wire switching during catalysis, and formation of epimerization product.
Conclusions
The EcDHNA and SaDHNA structures, each in complex with NP, reveal the basis for the biochemical differences between EcDHNA and SaDHNA. The atomic substrate binding model and MD simulation offer insights into substrate binding and catalysis by DHNA. The EcDHNA structure also affords an opportunity to develop antimicrobials specific for Gram-negative bacteria, as DHNAs from Gram-negative bacteria are highly homologous and E. coli is a representative of this class of bacteria.
doi:10.1186/2045-3701-4-52
PMCID: PMC4176595  PMID: 25264482
Dihydroneopterin aldolase; DHNA; Structure; Dynamics; Catalysis
2.  Structural Basis for the Aldolase and Epimerase Activities of Staphylococcus aureus Dihydroneopterin Aldolase 
Journal of molecular biology  2007;368(1):161-169.
Dihydroneopterin aldolase (DHNA) catalyzes the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and also the epimerization of DHNP to 7,8-dihydromonopterin (DHMP). Although crystal structures of the enzyme from several microorganisms have been reported, no structural information is available about the critical interactions between DHNA and the trihydroxypropyl moiety of the substrate, which undergoes bond cleavage and formation. Here, we present the structures of Staphylococcus aureus DHNA (SaDHNA) in complex with neopterin (NP, an analog of DHNP) and with monapterin (MP, an analog of DHMP), filling the gap in the structural analysis of the enzyme. In combination with previously reported SaDHNA structures in its ligand-free form (PDB entry 1DHN) and in complex with HP (PDB entry 2DHN), four snapshots for the catalytic center assembly along the reaction pathway can be derived, advancing our knowledge about the molecular mechanism of SaDHNA-catalyzed reactions. An additional step appears to be necessary for the epimerization of DHMP to DHNP. Three active site residues (E22, K100, and Y54) function coordinately during catalysis: together, they organize the catalytic center assembly, and individually, each plays a central role at different stages of the catalytic cycle.
doi:10.1016/j.jmb.2007.02.009
PMCID: PMC1885205  PMID: 17331536
aldolase; dihydroneopterin aldolase; dihydroneopterin; dihydromonapterin; pterin

Results 1-2 (2)