Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Promoter prediction in E. coli based on SIDD profiles and Artificial Neural Networks 
BMC Bioinformatics  2010;11(Suppl 6):S17.
One of the major challenges in biology is the correct identification of promoter regions. Computational methods based on motif searching have been the traditional approach taken. Recent studies have shown that DNA structural properties, such as curvature, stacking energy, and stress-induced duplex destabilization (SIDD) are useful in promoter prediction, as well. In this paper, the currently used SIDD energy threshold method is compared to the proposed artificial neural network (ANN) approach for finding promoters based on SIDD profile data.
When compared to the SIDD threshold prediction method, artificial neural networks showed noticeable improvements for precision, recall, and F-score over a range of values. The maximal F-score for the ANN classifier was 62.3 and 56.8 for the threshold-based classifier.
Artificial neural networks were used to predict promoters based on SIDD profile data. Results using this technique were an improvement over the previous SIDD threshold approach. Over a wide range of precision-recall values, artificial neural networks were more capable of identifying distinctive characteristics of promoter regions than threshold based methods.
PMCID: PMC3026364  PMID: 20946600
2.  CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats 
BMC Bioinformatics  2007;8:209.
Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes.
CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT proved to be a huge improvement over Patscan. Both CRT and Pilercr were comparable in speed, however CRT was faster for genomes containing large numbers of repeats.
In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, showed some important improvements over current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.
PMCID: PMC1924867  PMID: 17577412

Results 1-2 (2)