PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (72)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
2.  Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke – induced pulmonary injury and emphysema 
Nature medicine  2010;16(7):767-773.
Rtp801, a stress – related protein triggered by adverse environmental conditions, inhibits mTOR and enhances oxidative stress – dependent cell death. We postulated that Rtp801 acts as potential amplifying switch in the development of cigarette smoke – induced lung injury, leading to emphysema. Rtp801 was overexpressed in human emphysematous lungs and in lungs of mice exposed to cigarette smoke. The upregulation of Rtp801 expression by cigarette smoke in the lung relied on oxidative stress – dependent activation of the CCAAT response element. Rtp801 was necessary and sufficient for NF – κ B activation in cultured cells and, when forcefully expressed in mouse lungs, it promoted NF – kB activation, alveolar inflammation, oxidative stress, and apoptosis of alveolar septal cells. On the other hand, Rtp801 − / − mice were markedly protected against acute cigarette smoke – induced lung injury, partly via increased mTOR signaling, and, when exposed chronically, against emphysema. Our data support the notion that Rtp801 may represent an important molecular sensor and mediator of lung injury to cigarette smoke.
doi:10.1038/nm.2157
PMCID: PMC3956129  PMID: 20473305
Rtp801; cigarette smoke; oxidative stress; apoptosis; inflammation; NF –κB; rapamycin
3.  Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle 
Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystrophic process. We also observed widespread alterations in the expression of genes associated with the X-ROS pathway and redox homeostasis in muscles from both Duchenne muscular dystrophy patients and mdx mice. As nuclear factor erythroid 2-related factor 2 (Nrf2) plays an essential role in the transcriptional regulation of genes involved in redox homeostasis, we hypothesized that Nrf2 deficiency may contribute to enhanced X-ROS signaling by reducing redox buffering. To directly test the effect of diminished Nrf2 activity, Nrf2 was genetically silenced in the A/J model of dysferlinopathy—a model with a mild histopathologic and functional phenotype. Nrf2-deficient A/J mice exhibited significant muscle-specific functional deficits, histopathologic abnormalities, and dramatically enhanced X-ROS compared to control A/J and WT mice, both with functional Nrf2. Having identified that reduced Nrf2 activity is a negative disease modifier, we propose that strategies targeting Nrf2 activation may address the generalized reduction in redox homeostasis to halt or slow dystrophic progression.
doi:10.3389/fphys.2014.00057
PMCID: PMC3928547  PMID: 24600403
Nrf2; X-ROS; ROS; dysferlin; dystrophy
4.  NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation 
A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2–related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2′-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure.
doi:10.1172/JCI70812
PMCID: PMC3904618  PMID: 24463449
5.  Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction 
The Journal of Clinical Investigation  2013;123(12):5212-5230.
Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/– or Map1lc3B–/–) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6–/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1–/–, Map1lc3B–/–, and Hdac6–/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.
doi:10.1172/JCI69636
PMCID: PMC3859407  PMID: 24200693
6.  Oxidized phospholipids impair pulmonary antibacterial defenses: Evidence in mice exposed to cigarette smoke 
Patients with COPD are associated with poor pulmonary anti-bacterial innate defenses, which increase the risk for frequent acute exacerbations caused by bacterial infection. Despite elevated numbers of phagocytes (macrophages and neutrophils), airways of patients with COPD show stable bacterial colonization. A defect in the phagocytic ability of alveolar macrophages (AMs) is one of the primary reasons for failure to clear the invading bacteria in airways of smokers and COPD patients and also in mice exposed to cigarette smoke (CS). Oxidative stress, as a result of CS exposure is implicated; however, the factors or mediators that inhibit phagocytic activity of AMs in lungs of smokers remain unclear. In the current study, we provide evidence that accumulation of oxidized phospholipids (Ox-PLs) mediate inhibition of phagocytic function of AMs in CS-exposed mice. Mice exposed to 6 months of CS showed impaired bacterial phagocytosis and clearance by AMs and elevated levels of Ox-PLs in bronchoalveolar lavage fluid (BALF), compared to mice exposed to room air. Intratracheal instillation of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OX-PAPC) inhibited phagocytic activity of AMs and impaired pulmonary bacterial clearance in mice. In vitro studies demonstrated that exposure of J774 macrophages to OX-PAPC inhibited bacterial phagocytosis and clearance. However, pre-treatment of OX-PAPC with the monoclonal antibody EO6, which specifically binds to oxidized phospholipid but not native phospholipid, abolished OX-PAPC induced inhibition of bacterial phagocytosis and clearance. Incubation of BALF retrieved from CS-exposed mice impaired bacterial phagocytosis by J774 macrophages, which was abolished by pre-treatment of BALF with the EO6 antibody. In conclusion, our study shows that Ox-PLs generated following chronic CS exposure could play a crucial role in inhibiting phagocytic function of AMs and thus impair pulmonary anti-bacterial innate defenses in CS-exposed mice. Therapeutic approaches that augment pulmonary antioxidant defenses could be beneficial in reducing oxidative stress-driven impairment of phagocytosis by AMs in smokers and COPD patients.
doi:10.1016/j.bbrc.2012.08.076
PMCID: PMC3495329  PMID: 22935414
COPD; macrophages; oxidized phospholipids; bacteria; phagocytosis; cigarette smoke
7.  Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis 
The Journal of Clinical Investigation  2013;123(7):2921-2934.
The mechanisms by which deregulated nuclear factor erythroid-2–related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells.
doi:10.1172/JCI66353
PMCID: PMC3696551  PMID: 23921124
8.  Aquaporin 5 regulates cigarette smoke induced emphysema by modulating barrier and immune properties of the epithelium 
Tissue Barriers  2013;1(4):e25248.
Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality. Cigarette smoke, the most common risk factor for COPD, induces airway and alveolar epithelial barrier permeability and initiates an innate immune response. Changes in abundance of aquaporin 5 (AQP5), a water channel, can affect epithelial permeability and immune response after cigarette smoke exposure. To determine how AQP5-derived epithelial barrier modulation affects epithelial immune response to cigarette smoke and development of emphysema, WT and AQP5−/− mice were exposed to cigarette smoke (CS). We measured alveolar cell counts and differentials, and assessed histology, mean-linear intercept (MLI), and surface-to-volume ratio (S/V) to determine severity of emphysema. We quantified epithelial-derived signaling proteins for neutrophil trafficking, and manipulated AQP5 levels in an alveolar epithelial cell line to determine specific effects on neutrophil transmigration after CS exposure. We assessed paracellular permeability and epithelial turnover in response to CS. In contrast to WT mice, AQP5−/− mice exposed to 6 months of CS did not demonstrate a significant increase in MLI or a significant decrease in S/V compared with air-exposed mice, conferring protection against emphysema. After sub-acute (4 weeks) and chronic (6 mo) CS exposure, AQP5−/− mice had fewer alveolar neutrophil but similar lung neutrophil numbers as WT mice. The presence of AQP5 in A549 cells, an alveolar epithelial cell line, was associated with increase neutrophil migration after CS exposure. Compared with CS-exposed WT mice, neutrophil ligand (CD11b) and epithelial receptor (ICAM-1) expression were reduced in CS-exposed AQP5−/− mice, as was secreted LPS-induced chemokine (LIX), an epithelial-derived neutrophil chemoattractant. CS-exposed AQP5−/− mice demonstrated decreased type I pneumocytes and increased type II pneumocytes compared with CS-exposed WT mice suggestive of enhanced epithelial repair. Absence of AQP5 protected against CS-induced emphysema with reduced epithelial permeability, neutrophil migration, and altered epithelial cell turnover which may enhance repair.
doi:10.4161/tisb.25248
PMCID: PMC3783223  PMID: 24665410
Aquaporin 5; epithelial permeability; barrier function; epithelial immune response
9.  Experimental Therapeutics of Nrf2 as a Target for Prevention of Bacterial Exacerbations in COPD 
A growing body of evidence indicates that oxidative stress plays a central role in the progression of chronic obstructive pulmonary disease (COPD). Chronic oxidative stress caused by cigarette smoke generates damage-associated molecular patterns (DAMPs), such as oxidatively or nitrosatively modified proteins and extracellular matrix fragments, which induce abnormal airway inflammation by activating innate and adaptive immune responses. Furthermore, oxidative stress–induced histone deacetylase 2 (HDAC2) inactivity is implicated in amplifying inflammatory responses and corticosteroid resistance in COPD. Oxidative stress also mediates disruption of innate immune defenses, which is associated with acute exacerbation of COPD. Host defense transcription factor Nuclear factor erythroid 2–related factor 2 (Nrf2) regulates a multifaceted cytoprotective response to counteract oxidative stress–induced pathological injuries. A decrease in Nrf2 signaling is associated with the progression of diseases. Recent evidence indicates that targeting Nrf2 can be a novel therapy to mitigate inflammation, improve innate antibacterial defenses, and restore corticosteroid responses in patients with COPD.
doi:10.1513/pats.201201-009MS
PMCID: PMC3359107  PMID: 22550241
COPD; Nrf2; bacteria; exacerbation; therapeutics
10.  Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis 
A number of factors have been identified that increase the risk of HCC. Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first line therapy for the treatment of type II diabetes where it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabetes with a reduced risk of HCC. While a number of preclinical studies demonstrate the anticancer properties of metformin in a number of tissues, no studies have directly examined the effect of metformin on preventing carcinogenesis in the liver, one of its main sites of action. We show in these studies that metformin protected mice against chemically induced liver tumors. Interestingly, metformin did not increase AMPK activation, often shown to be a metformin target. Rather metformin decreased the expression of several lipogenic enzymes and lipogenesis. Additionally, restoring lipogenic gene expression by ectopic expression of the lipogenic transcription factor SREBP1c rescues metformin mediated growth inhibition. This mechanism of action suggests that metformin may also be useful for patients with other disorders associated with HCC where increased lipid synthesis is observed. As a whole these studies demonstrate that metformin prevents HCC and that metformin should be evaluated as a preventive agent for HCC in readily identifiable at risk patients.
doi:10.1158/1940-6207.CAPR-11-0228
PMCID: PMC3324649  PMID: 22467080
Metformin; HCC; Tumor growth; lipogenesis; chemoprevention
11.  12/15-lipoxygenase expressed in non-epithelial cells causes airway epithelial injury in asthma 
Scientific Reports  2013;3:1540.
The mechanisms underlying asthmatic airway epithelial injury are not clear. 12/15-lipoxygenase (an ortholog of human 15-LOX-1), which is induced by IL-13, is associated with mitochondrial degradation in reticulocytes at physiological conditions. In this study, we showed that 12/15-LOX expressed in nonepithelial cells caused epithelial injury in asthma pathogenesis. While 12/15-LOX overexpression or IL-13 administration to naïve mice showed airway epithelial injury, 12/15-LOX knockout/knockdown in allergic mice reduced airway epithelial injury. The constitutive expression of 15-LOX-1 in bronchial epithelia of normal human lungs further indicated that epithelial 15-LOX-1 may not cause epithelial injury. 12/15-LOX expression is increased in various inflammatory cells in allergic mice. Though non-epithelial cells such as macrophages or fibroblasts released 12/15-LOX metabolites upon IL-13 induction, bronchial epithelia didn't release. Further 12-S-HETE, arachidonic acid metabolite of 12/15-LOX leads to epithelial injury. These findings suggested 12/15-LOX expressed in non-epithelial cells such as macrophages and fibroblasts leads to bronchial epithelial injury.
doi:10.1038/srep01540
PMCID: PMC3607899  PMID: 23528921
12.  Linoleic acid metabolite drives severe asthma by causing airway epithelial injury 
Scientific Reports  2013;3:1349.
Airway epithelial injury is the hallmark of various respiratory diseases, but its mechanisms remain poorly understood. While 13-S-hydroxyoctadecadienoic acid (13-S-HODE) is produced in high concentration during mitochondrial degradation in reticulocytes little is known about its role in asthma pathogenesis. Here, we show that extracellular 13-S-HODE induces mitochondrial dysfunction and airway epithelial apoptosis. This is associated with features of severe airway obstruction, lung remodeling, increase in epithelial stress related proinflammatory cytokines and drastic airway neutrophilia in mouse. Further, 13-S-HODE induced features are attenuated by inhibiting Transient Receptor Potential Cation Channel, Vanilloid-type 1 (TRPV1) both in mouse model and human bronchial epithelial cells. These findings are relevant to human asthma, as 13-S-HODE levels are increased in human asthmatic airways. Blocking of 13-S-HODE activity or disruption of TRPV1 activity attenuated airway injury and asthma mimicking features in murine allergic airway inflammation. These findings indicate that 13-S-HODE induces mitochondrial dysfunction and airway epithelial injury.
doi:10.1038/srep01349
PMCID: PMC3583002  PMID: 23443229
13.  Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf2 signaling, and Age-related Macular Degeneration 
Vision research  2009;50(7):652-664.
Age-related Macular Degeneration (AMD) is the leading cause of blindness among the elderly. While excellent treatment has emerged for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. Cigarette smoking is the strongest epidemiologic risk factor, yet we do not understand how smoking contributes to AMD. Smoking related oxidative damage during the early phases of AMD may play an important role. This review explores how cigarette smoking and oxidative stress to the retinal pigmented epithelium (RPE) might contribute to AMD, and how the transcription factor Nrf2 can activate a cytoprotective response.
doi:10.1016/j.visres.2009.08.018
PMCID: PMC3575185  PMID: 19703486
Age-related Macular Degeneration; Cigarette smoking; Nrf2; Oxidative stress; Retinal pigmented epithelium
14.  Conditional Deletion of Nrf2 in Airway Epithelium Exacerbates Acute Lung Injury and Impairs the Resolution of Inflammation 
Oxidant stress, resulting from an excess of reactive electrophiles produced in the lung by both resident (epithelial and endothelial) and infiltrated leukocytes, is thought to play an obligatory role in tissue injury and abnormal repair. Previously, using a conventional (whole-body) knockout model, we showed that antioxidative gene induction regulated by the transcription factor Nrf2 is critical for mitigating oxidant-induced (hyperoxic) stress, as well as for preventing and resolving tissue injury and inflammation in vivo. However, the contribution to pathogenic acute lung injury (ALI) of the cellular stress produced by resident versus infiltrated leukocytes remains largely undefined in vivo. To address this critical gap in our knowledge, we generated mice with a conditional deletion of Nrf2 specifically in Clara cells, subjected these mice to hyperoxic insult, and allowed them to recover. We report that a deficiency of Nrf2 in airway epithelia alone is sufficient to contribute to the development and progression of ALI. When exposed to hyperoxia, mice lacking Nrf2 in Clara cells showed exacerbated lung injury, accompanied by greater levels of cell death and epithelial sloughing than in their wild-type littermates. In addition, we found that an Nrf2 deficiency in Clara cells is associated with a persistent inflammatory response and epithelial sloughing in the lungs during recovery from sublethal hyperoxic insult. Our results demonstrate (for the first time, to the best of our knowledge) that Nrf2 signaling in Clara cells is critical for conferring protection from hyperoxic lung injury and for resolving inflammation during the repair process.
doi:10.1165/rcmb.2011-0144OC
PMCID: PMC3262666  PMID: 21659655
oxidative stress; lung injury and repair; inflammation
15.  Telomere Length Is a Determinant of Emphysema Susceptibility 
Rationale: Germline mutations in the enzyme telomerase cause telomere shortening, and have their most common clinical manifestation in age-related lung disease that manifests as idiopathic pulmonary fibrosis. Short telomeres are also a unique heritable trait that is acquired with age.
Objectives: We sought to understand the mechanisms by which telomerase deficiency contributes to lung disease.
Methods: We studied telomerase null mice with short telomeres.
Measurements and Main Results: Although they have no baseline histologic defects, when mice with short telomeres are exposed to chronic cigarette smoke, in contrast with controls, they develop emphysematous air space enlargement. The emphysema susceptibility did not depend on circulating cell genotype, because mice with short telomeres developed emphysema even when transplanted with wild-type bone marrow. In lung epithelium, cigarette smoke exposure caused additive DNA damage to telomere dysfunction, which limited their proliferative recovery, and coincided with a failure to down-regulate p21, a mediator of cellular senescence, and we show here, a determinant of alveolar epithelial cell cycle progression. We also report early onset of emphysema, in addition to pulmonary fibrosis, in a family with a germline deletion in the Box H domain of the RNA component of telomerase.
Conclusions: Our data indicate that short telomeres lower the threshold of cigarette smoke–induced damage, and implicate telomere length as a genetic susceptibility factor in emphysema, potentially contributing to its age-related onset in humans.
doi:10.1164/rccm.201103-0520OC
PMCID: PMC3208661  PMID: 21757622
telomerase; chronic obstructive pulmonary disease; dyskeratosis congenita; interstitial lung disease
16.  Enhancing Nrf2 Pathway by Disruption of Keap1 in Myeloid Leukocytes Protects against Sepsis 
Rationale: Sepsis syndrome is characterized by inappropriate amplified systemic inflammatory response and bacteremia that promote multiorgan failure and mortality. Nuclear factor–erythroid 2 p45-related factor 2 (Nrf2) regulates a pleiotropic cytoprotective defense program including antioxidants and protects against several inflammatory disorders by inhibiting oxidative tissue injuries. However, the role of enhanced Nrf2 activity in modulating innate immune responses to microbial infection and pathogenesis of sepsis is unclear.
Objectives: To determine whether Nrf2 in myeloid leukocytes alters inflammatory response and protects against sepsis.
Methods: Mice with deletion of Nrf2 or kelch-like ECH-associated protein (Keap1) in myeloid leukocyte cells and respective floxed controls were subjected to cecal ligation and puncture–induced sepsis and were assessed for survival, organ injury, systemic inflammation, and bacteremia. Using LPS-stimulated peritoneal macrophages, Toll-like receptor (TLR) 4 surface trafficking and downstream signaling events were analyzed.
Measurements and Main Results: Mortality, organ injury, circulating levels of inflammatory mediators, and bacteremia were markedly reduced in LysM-Keap1−/− compared with respective floxed controls (Keap1f/f or Nrf2f/f) and significantly elevated in LysM-Nrf2−/− mice after cecal ligation and puncture. Peritoneal macrophages from septic LysM-Keap1−/− mice showed a greater bacterial phagocytic activity compared with LysM-Nrf2−/− and floxed controls. LPS stimulation resulted in greater reactive oxygen species–induced cell surface transport of TLR4 from trans-Golgi network and subsequent TLR4 downstream signaling (recruitment of MYD88 and TRIF, phosphorylation of IkB and IRF3, and cytokine expression) in macrophages of LysM-Nrf2−/− compared with LysM-Keap1−/− mice and floxed controls.
Conclusions: Our study shows that Nrf2 acts as a critical immunomodulator in leukocytes, controls host inflammatory response to bacterial infection, and protects against sepsis.
doi:10.1164/rccm.201102-0271OC
PMCID: PMC3208662  PMID: 21799073
Nrf2; Keap1; sepsis; antioxidants; inflammation
17.  Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia 
Background and Purpose
Carbon monoxide (CO) is a gaseous second messenger produced when heme oxygenase (HO) enzymes catabolize heme. We have demonstrated that CO can be therapeutic in ischemia-reperfusion brain injury; however, it is unclear whether CO can also offer protection in permanent ischemic stroke or what mechanism(s) underlies the effect. HO1 neuroprotection was shown to be regulated by Nrf2; therefore, we investigated whether CO might partially exert neuroprotection by modulating the Nrf2 pathway.
Methods
To evaluate potential protective effects of CO, we exposed male wildtype and Nrf2 knockout mice to 250 ppm CO or control air for 18 hours immediately after permanent middle cerebral artery occlusion. Infarct volume and neurological deficits were assessed on day 7. Molecular mechanisms of Nrf2 pathway activation by CO were also investigated.
Results
Mice exposed to CO after permanent ischemia had 29.6±12.6% less brain damage than did controls at 7 days, though amelioration in neurological deficits did not reach significance. Additionally, 18-hour CO treatment led to Nrf2 dissociation from Keap1, nuclear translocation, increased binding activity of Nrf2 to HO1 antioxidant response elements, and elevated HO1 expression 6–48 hours after CO exposure. The CO neuroprotection was completely abolished in Nrf2 knockout mice.
Conclusions
Low-concentration CO represent a neuroprotective agent for combination treatment of ischemic stroke, and its beneficial effect would be at least partially mediated by activation of the Nrf2 pathway.
doi:10.1161/STROKEAHA.110.607101
PMCID: PMC3278075  PMID: 21852618
carboxyhemoglobin; heme oxygenase; mouse; neuroprotection; stroke
18.  Neonatal Hyperoxia Contributes Additively to Cigarette Smoke–Induced Chronic Obstructive Pulmonary Disease Changes in Adult Mice 
The extent by which early postnatal lung injury contributes to the development of chronic obstructive pulmonary disease (COPD) in the adult is unclear. We hypothesized that exposure to hyperoxia during early postnatal life can augment lung changes caused by adult chronic cigarette smoke (CS) exposure. C57BL/6J mice (1 d old) were exposed to hyperoxia (O2) for 5 days. At 1 month of age, half of the O2–exposed mice and half of the control mice were placed in a CS chamber for 6 months. After exposure to CS, mice underwent quasi-static pressure–volume curve and mean chord length measurements; quantification of pro–Sp-c expression; and measurement of lung IL-8/ KC, CXCR2/IL8Rα, TNF-α, and IL-6 mRNA by real-time PCR. Adult mice exposed to O2+CS had significantly larger chord length measurements (P < 0.02) and lung volumes at 35 cm H2O (P < 0.05) compared with all other groups. They also had significantly less pro–Sp-c protein and surfactant protein C mRNA expression (P < 0.003). Mice exposed to O2+CS and CS-only mice had significantly higher lung resistance and longer mean time constants (P < 0.01), significantly more inflammatory cells in the bronchoalveolar lavage fluid (P < 0.03), and significantly higher levels of lung CXCR2/IL8Rα mRNA compared with mice not exposed to smoke (P < 0.02). We conclude that exposure to early postnatal hyperoxia contributed additively to CS-induced COPD changes in adult mice. These results may be relevant to a growing population of preterm children who sustained lung injury in the newborn period and may be exposed to CS in later life.
doi:10.1165/rcmb.2010-0259OC
PMCID: PMC3175575  PMID: 21239606
early postnatal hyperoxia; airspace abnormalities; chronic cigarette smoke exposure; chronic obstructive pulmonary disease
19.  Opposing effects of nasal epithelial NQO1 and HO-1 expression on upper and lower airway symptoms in adolescents with asthma 
Summary
NQO1 and HO-1 expression in nasal epithelium are inversely correlated indicating that non-NRF2 mechanisms may play an important role in regulation of these genes. Further, NQO1 and HO-1 expression have opposing relationships with upper and lower airways symptoms, suggesting that induction of phase II enzymes could result in pleiotropic clinical effects.
doi:10.1016/j.jaci.2011.03.029
PMCID: PMC3169320  PMID: 21531452
NQO1; HO-1; NRF2; Oxidative Stress; Asthma; Nasal Epithelium
20.  Suppressed Expression of T-Box Transcription Factors Is Involved in Senescence in Chronic Obstructive Pulmonary Disease 
PLoS Computational Biology  2012;8(7):e1002597.
Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD, as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs.
Author Summary
Chronic obstructive pulmonary disease or COPD is among the most lethal of respiratory diseases. While this disease has been well characterized, more studies are needed to learn the interaction of macromolecules involved in the progression towards illness. We explored possible interactions involved in the disease process using a compendium of gene expression data from frontline cells of the respiratory airways of the lung. The gene expression data were generated under a variety of experimental conditions. Application of computational schemes, which robustly detect enduring patterns, among sections of the genes represented across the varying experimental perturbations, revealed important regulatory relationships. When gene expression data from lungs of patients with COPD were factored into these networks of regulatory relationships, certain highly connected nodes (hubs) representing differentially expressed genes emerged. Notably included are members of the T-box (TBX) family of genes and CDKN2A, which regulate cellular aging. These findings were confirmed in studies using lung samples from COPD patients. Novel genes linked to TBX and CDKN2A include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML, which were thus predicted to be involved in the disease process. The balance between senescence and anti-senescence factors is disrupted towards senescence in COPD lungs.
doi:10.1371/journal.pcbi.1002597
PMCID: PMC3400575  PMID: 22829758
21.  Prolonged sulforaphane treatment does not enhance tumorigenesis in oncogenic K-ras and xenograft mouse models of lung cancer 
Background:
Sulforaphane (SFN), an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), is a promising chemopreventive agent which is undergoing clinical trial for several diseases. Studies have indicated that there is gain of Nrf2 function in lung cancer and other solid tumors because of mutations in the inhibitor Kelch-like ECH-associated protein 1 (Keap1). More recently, several oncogenes have been shown to activate Nrf2 signaling as the main prosurvival pathway mediating ROS detoxification, senescence evasion, and neoplastic transformation. Thus, it is important to determine if there is any risk of enhanced lung tumorigenesis associated with prolonged administration of SFN using mouse models of cancer.
Materials and Methods:
We evaluated the effect of prolonged SFN treatment on oncogenic K-ras (K-rasLSL-G12D)-driven lung tumorigenesis. One week post mutant-K-ras expression, mice were treated with SFN (0.5 mg, 5 d/wk) for 3 months by means of a nebulizer. Fourteen weeks after mutant K-ras expression (K-rasLSL-G12D), mice were sacrificed, and lung sections were screened for neoplastic foci. Expression of Nrf2-dependent genes was measured using real time RT-PCR. We also determined the effect of prolonged SFN treatment on the growth of preclinical xenograft models using human A549 (with mutant K-ras and Keap1 allele) and H1975 [with mutant epidermal growth factor receptor (EGFR) allele] nonsmall cell lung cancer cells.
Results:
Systemic SFN administration did not promote the growth of K-rasLSL-G12D-induced lung tumors and had no significant effect on the growth of A549 and H1975 established tumor xenografts in nude mice. Interestingly, localized delivery of SFN significantly attenuated the growth of A549 tumors in nude mice, suggesting an Nrf2-independent antitumorigenic activity of SFN.
Conclusions:
Our results demonstrate that prolonged SFN treatment does not promote lung tumorigenesis in various mouse models of lung cancer.
doi:10.4103/1477-3163.98459
PMCID: PMC3424666  PMID: 22919281
EGFR; Keap1; K-ras; lung cancer; Nrf2; sulforaphane
22.  Novel Chalcone Derivatives as Potent Nrf2 Activators in Mice and Human Lung Epithelial Cells 
Journal of medicinal chemistry  2011;54(12):4147-4159.
Nrf2-mediated activation of antioxidant response element is a central part of molecular mechanisms governing the protective function of phase II detoxification and antioxidant enzymes against carcinogenesis, oxidative stress and inflammation. Nrf2 is sequestered in the cytoplasm by its repressor, Keap1. We have designed and synthesized novel chalcone derivatives as Nrf2 activators. The potency of these compounds was measured by the expression of Nrf2 dependent antioxidant genes, GCLM, NQO1 and HO1, in human lung epithelial cells; while the cytotoxicity was analyzed using MTT assay. In vivo potency of identified lead compounds to activate Nrf2 was evaluated using mouse model. Our studies showed 2-trifluoromethyl-2’-methoxychalone (2b) to be a potent activator of Nrf2, both, in vitro and in mice. Additional experiments showed that the activation of Nrf2 by this compound is independent of reactive oxygen species or redox changes. We have discussed a quantitative structure-activity relationship and proposed a possible mechanism of Nrf2 activation.
doi:10.1021/jm2002348
PMCID: PMC3212436  PMID: 21539383
23.  Upregulation of TLR1, TLR2, TLR4, and IRAK-2 Expression During ML-1 Cell Differentiation to Macrophages: Role in the Potentiation of Cellular Responses to LPS and LTA 
ISRN Oncology  2012;2012:641246.
12-O-tetradecanoylphorbol 13-acetate (TPA) induces the differentiation of human myeloid ML-1 cells to macrophages. In the current study, the expression, responsiveness, and regulation of toll-like receptors (TLRs) in TPA-induced ML-1-derived macrophages were investigated. We have found that TPA-induced differentiation of ML-1 cells was accompanied by the upregulation of TLR1, TLR2, TLR4, and CD14 expression at both the mRNA and protein levels. Interestingly, TLR1 and TLR4 protein expression on ML-1 cells could be blocked by pretreatment with U0126, suggesting the role of an Erk1/2-induced differentiation signal in this process. In addition, the expression of IRAK-2, a key member of the TLR/IRAK-2/NF-κB-dependent signaling cascade was also induced in response to TPA. Accordingly, we demonstrated an increased cellular release of inflammatory cytokines (TNF-α and various interleukins) upon stimulation with LPS and LTA ligands for TLR4 and TLR2, respectively. Furthermore, using luminol-dependent chemiluminescence, addition of LPS and LTA induces a sustained DPI-inhibitable generation of reactive oxygen species (ROS) by the differentiated ML-1 cells. Together, these data suggest that the increase in the responsiveness of TPA-treated ML-1 cells to LPS and LTA occurs in response to the upregulation of their respective receptors as well as an induction of the IRAK-2 gene expression.
doi:10.5402/2012/641246
PMCID: PMC3364600  PMID: 22685674
24.  The Transcription Factor Encyclopedia 
Yusuf, Dimas | Butland, Stefanie L | Swanson, Magdalena I | Bolotin, Eugene | Ticoll, Amy | Cheung, Warren A | Cindy Zhang, Xiao Yu | Dickman, Christopher TD | Fulton, Debra L | Lim, Jonathan S | Schnabl, Jake M | Ramos, Oscar HP | Vasseur-Cognet, Mireille | de Leeuw, Charles N | Simpson, Elizabeth M | Ryffel, Gerhart U | Lam, Eric W-F | Kist, Ralf | Wilson, Miranda SC | Marco-Ferreres, Raquel | Brosens, Jan J | Beccari, Leonardo L | Bovolenta, Paola | Benayoun, Bérénice A | Monteiro, Lara J | Schwenen, Helma DC | Grontved, Lars | Wederell, Elizabeth | Mandrup, Susanne | Veitia, Reiner A | Chakravarthy, Harini | Hoodless, Pamela A | Mancarelli, M Michela | Torbett, Bruce E | Banham, Alison H | Reddy, Sekhar P | Cullum, Rebecca L | Liedtke, Michaela | Tschan, Mario P | Vaz, Michelle | Rizzino, Angie | Zannini, Mariastella | Frietze, Seth | Farnham, Peggy J | Eijkelenboom, Astrid | Brown, Philip J | Laperrière, David | Leprince, Dominique | de Cristofaro, Tiziana | Prince, Kelly L | Putker, Marrit | del Peso, Luis | Camenisch, Gieri | Wenger, Roland H | Mikula, Michal | Rozendaal, Marieke | Mader, Sylvie | Ostrowski, Jerzy | Rhodes, Simon J | Van Rechem, Capucine | Boulay, Gaylor | Olechnowicz, Sam WZ | Breslin, Mary B | Lan, Michael S | Nanan, Kyster K | Wegner, Michael | Hou, Juan | Mullen, Rachel D | Colvin, Stephanie C | Noy, Peter John | Webb, Carol F | Witek, Matthew E | Ferrell, Scott | Daniel, Juliet M | Park, Jason | Waldman, Scott A | Peet, Daniel J | Taggart, Michael | Jayaraman, Padma-Sheela | Karrich, Julien J | Blom, Bianca | Vesuna, Farhad | O'Geen, Henriette | Sun, Yunfu | Gronostajski, Richard M | Woodcroft, Mark W | Hough, Margaret R | Chen, Edwin | Europe-Finner, G Nicholas | Karolczak-Bayatti, Magdalena | Bailey, Jarrod | Hankinson, Oliver | Raman, Venu | LeBrun, David P | Biswal, Shyam | Harvey, Christopher J | DeBruyne, Jason P | Hogenesch, John B | Hevner, Robert F | Héligon, Christophe | Luo, Xin M | Blank, Marissa Cathleen | Millen, Kathleen Joyce | Sharlin, David S | Forrest, Douglas | Dahlman-Wright, Karin | Zhao, Chunyan | Mishima, Yuriko | Sinha, Satrajit | Chakrabarti, Rumela | Portales-Casamar, Elodie | Sladek, Frances M | Bradley, Philip H | Wasserman, Wyeth W
Genome Biology  2012;13(3):R24.
Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.
doi:10.1186/gb-2012-13-3-r24
PMCID: PMC3439975  PMID: 22458515
25.  KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma 
Journal of Human Genetics  2011;56(3):230-234.
Distinctive histological variants of lung cancer are increasingly recognized to have specific genetic changes that impact tumor biology and response to therapy. In this study, we evaluated true papillary adenocarcinoma of the lung, proposed as a distinct diagnostic category with relatively poor response to therapy, to determine whether these tumors also have specific molecular alterations that would affect sensitivity to chemotherapy. Specifically, we measured protein levels of P53, ERCC1 and RRM1 by immunohistochemistry and evaluated the KEAP1 gene for mutations, correlating mutations of this gene with total and nuclear expression of the NRF2 transcription factor. We found high levels of P53 in 23 of the 55 specimens (41.8%), similar to the rate of P53 gene mutations observed in general for pulmonary adenocarcinoma, and levels of ERCC1 and RRM1 also showed distributions similar to those reported generally for NSCLC. However, KEAP1 alterations were observed at a significantly higher frequency in papillary adenocarcinoma tumors (60%) than what has been reported previously for NSCLC (3% to 19%). These mutations of KEAP1 were associated with increased nuclear accumulation of NRF2 in tumors, as expected for functional alterations. Thus, high rates of KEAP1 mutations and NRF2 overexpression in true papillary adenocarcinoma could be related to poor prognosis and chemotherapy resistance. Furthermore, this distinctive molecular characteristic supports the recognition of true papillary adenocarcinoma as a diagnostic entity.
doi:10.1038/jhg.2010.172
PMCID: PMC3268659  PMID: 21248763
Pulmonary papillary adenocarcinoma; KEAP1 mutation; NRF2 expression; NSCLC

Results 1-25 (72)