PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors 
Scientific Reports  2014;4:3773.
For hydrogen sensors built with pure Pd nanowires, the instabilities causing baseline drifting and temperature-driven sensing behavior are limiting factors when working within a wide temperature range. To enhance the material stability, we have developed superlattice-structured palladium and copper nanowires (PdCu NWs) with random-gapped, screw-threaded, and spiral shapes achieved by wet-chemical approaches. The microstructure of the PdCu NWs reveals novel superlattices composed of lattice groups structured by four-atomic layers of alternating Pd and Cu. Sensors built with these modified NWs show significantly reduced baseline drifting and lower critical temperature (259.4 K and 261 K depending on the PdCu structure) for the reverse sensing behavior than those with pure Pd NWs (287 K). Moreover, the response and recovery times of the PdCu NWs sensor were of ~9 and ~7 times faster than for Pd NWs sensors, respectively.
doi:10.1038/srep03773
PMCID: PMC3895925  PMID: 24440892
2.  Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips 
Nanoscale Research Letters  2009;4(5):431-436.
The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM). The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factor S(k) and the reduced radial distribution function G(r) were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.
doi:10.1007/s11671-009-9270-5
PMCID: PMC2894329  PMID: 20596340
Carbon nanotips; Graphite-like a-C; EELS; EFED; Field emission
3.  Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips 
Nanoscale Research Letters  2009;4(5):431-436.
The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM). The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k) and the reduced radial distribution functionG(r) were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law.
doi:10.1007/s11671-009-9270-5
PMCID: PMC2894329  PMID: 20596340
Carbon nanotips; Graphite-like a-C; EELS; EFED; Field emission

Results 1-3 (3)