PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (571)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  Thyroid disorders in pregnancy 
Thyroid disorders are common in pregnancy and the most common disorder is subclinical hypothyroidism. Due to the complex hormonal changes during pregnancy, it is important to remember that thyroxine requirements are higher in pregnancy. According to recent American Thyroid Association (ATA) guidelines, the recommended reference ranges for TSH are 0.1 to 2.5 mIU/L in the first trimester, 0.2 to 3.0 mIU/L in the second trimester, and 0.3 to 3.0 mIU/L in the third trimester. Maternal hypothyroidism is an easily treatable condition that has been associated with increased risk of low birth weight, fetal distress, and impaired neuropsychological development. Hyperthyroidism in pregnancy is less common as conception is a problem. Majority of them are due to Graves’ disease, though gestational hyperthyroidism is to be excluded. Preferred drug is propylthiouracil (PTU) with the target to maintain free T4 in upper normal range. Doses can be reduced in third trimester due to the immune-suppressant effects of pregnancy. Early and effective treatment of thyroid disorder ensures a safe pregnancy with minimal maternal and neonatal complications.
doi:10.4103/2230-8210.104031
PMCID: PMC3603018  PMID: 23565370
Thyroid disorders; pregnancy; hypothyroidism
2.  Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India 
Aquatic Biosystems  2012;8:26.
Background
Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11.
Results
Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period.
Conclusion
Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.
doi:10.1186/2046-9063-8-26
PMCID: PMC3543332  PMID: 23083531
Net ecosystem metabolism; Gross primary productivity; Community respiration; Nitrification; Nutrient load; Sundarban estuary
3.  Characterization of Rad51 from Apicomplexan Parasite Toxoplasma gondii: An Implication for Inefficient Gene Targeting 
PLoS ONE  2012;7(7):e41925.
Repairing double strand breaks (DSBs) is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR) as well as non homologous end joining (NHEJ) proteins in this lower eukaryote. In order to get mechanistic insights into the HR mediated DSB repair pathway in this parasite, we have characterized the key protein involved in homologous recombination, namely TgRad51, at the biochemical and genetic levels. We have purified recombinant TgRad51 protein to 99% homogeneity and have characterized it biochemically. The ATP hydrolysis activity of TgRad51 shows a higher KM and much lower kcat compared to bacterial RecA or Rad51 from other related protozoan parasites. Taking yeast as a surrogate model system we have shown that TgRad51 is less efficient in gene conversion mechanism. Further, we have found that TgRad51 mediated gene integration is more prone towards random genetic loci rather than targeted locus. We hypothesize that compromised ATPase activity of TgRad51 is responsible for inefficient gene targeting and poor gene conversion efficiency in this protozoan parasite. With increase in homologous flanking regions almost three fold increments in targeted gene integration is observed, which is similar to the trend found with ScRad51. Our findings not only help us in understanding the reason behind inefficient gene targeting in T. gondii but also could be exploited to facilitate high throughput knockout as well as epitope tagging of Toxoplasma genes.
doi:10.1371/journal.pone.0041925
PMCID: PMC3408395  PMID: 22860032
4.  HSP90 Controls SIR2 Mediated Gene Silencing 
PLoS ONE  2011;6(8):e23406.
In recent years, Hsp90 is found to interact with several telomeric proteins at various phases of cell cycle. The Hsp90 chaperone system controls assembly and disassembly of telomere structures and thus maintains the dynamic state of telomere. Here, for the first time we report that the activity of another telomeric protein Sir2p is modulated by Hsp82, the ortholog of Hsp90 from budding yeast (Saccharomyces cerevisiae). In a temperature sensitive Hsp90 deficient yeast strain (iG170Dhsp82), less abundant Sir2p is observed, resulting in de-repression of telomere silencing and a complete loss of mating type silencing. Intriguingly, over expression of Hsp90, either by exposing cells to heat shock or by introducing HSP82 overexpression plasmid also yields reduced level of Sir2p, with a consequential loss of telomere silencing. Thus, Hsp90 homeostasis maintains the cellular pool of Sir2p and thereby controls the reversible nature of telomere silencing. Interestingly, such regulation is independent of one of its major co-chaperones Sba1 (human ortholog of p23).
doi:10.1371/journal.pone.0023406
PMCID: PMC3150437  PMID: 21829731
5.  Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves 
Saline Systems  2010;6:8.
Background
Sundarbans is the largest chunk of mangrove forest and only tiger mangrove land in the world. Compared to the rich species diversity and uniqueness, very few studies have so far been conducted here, mainly due to its inaccessibility. This study explores water quality, density of biomass, species diversity, phytoplankton abundance and bacterial population of a tidal creek in Sunderban estuary during the post and pre monsoon period of 2008-09.
Results
Phytoplankton community was observed to be dominated by diatoms (Biacillariophyceae) followed by Pyrrophyceae (Dinoflagellates) and Chlorophyceae. A total of 46 taxa belonging to 6 groups were recorded. Other algal groups were Cyanophyceae, Euglenophyceae and Chrysophyceae. Species diversity was highest in summer (March) and lowest in winter season (November) in all the sample stations indicating its close correlation with ambient temperature. Species evenness was fairly high in all five stations throughout the study period. Present study indicated that dissolved oxygen, nutrients and turbidity are the limiting factors for the phytoplankton biomass. The estuary was in eutrophic condition (Chlorophyll-a ≥10 μg/L) in winter. During the month of May phytoplankton biomass declined and at high salinity level (21.2PSU) new phytoplankton species take over, which are definitely better resilient to the high saline environment. Bio-indicator species like Polykrikos schwartzil, Dinophysis norvegica and Prorocentrum concavum points to moderately polluted water quality of the estuary.
Conclusion
Eutrophication as well as presence of toxic Dinoflagellates and Cyanophyceae in the tidal creek of Sundarban estuary definitely revealed the deteriorated status of the water quality. The structure and function of the mangrove food web is unique, driven by both marine and terrestrial components. But little attention has been paid so far to the adaptive responses of mangrove biota to the various disturbances, and now our work unfolds the fact that marine status of Sundarban estuary is highly threatened which in turn will affect the ecology of the mangrove. This study indicates that ecosystem dynamics of the world heritage site Sundarban may facilitate bioinvasion putting a question mark on the sustainability of mangroves.
doi:10.1186/1746-1448-6-8
PMCID: PMC2928246  PMID: 20699005
7.  Correlation between physical anomaly and behavioral abnormalities in Down syndrome 
Objective:
The minor physical anomaly (MPA) is believed to reflect abnormal development of the CNS. The aim is to find incidence of MPA and its behavioral correlates in Down syndrome and to compare these findings with the other causes of intellectual disability and normal population.
Materials and Methods:
One-hundred and forty intellectually disabled people attending a tertiary care set-up and from various NGOs are included in the study. The age-matched group from normal population was also studied for comparison. MPA are assessed by using Modified Waldrop scale and behavioral abnormality by Diagnostic assessment scale for severely handicapped (DASH II scale).
Results:
The Down syndrome group had significantly more MPA than other two groups and most of the MPA is situated in the global head region. There is strong correlation (P < 0.001) between the various grouped items of Modified Waldrop scale. Depression subscale is correlated with anomalies in the hands (P < 0.001), feet and Waldrop total items (P < 0.005). Mania item of DASH II scale is related with anomalies around the eyes (P < 0.001). Self-injurious behavior and total Waldrop score is negatively correlated with global head.
Conclusion:
Down syndrome group has significantly more MPA and a pattern of correlation between MPA and behavioral abnormalities exists which necessitates a large-scale study.
doi:10.4103/1817-1745.76096
PMCID: PMC3087984  PMID: 21559153
Behavioral abnormalities; correlation; Down syndrome; minor physical anomaly
8.  A Case of Corpus Callosum Agenesis Presenting with Recurrent Brief Depression 
Agenesis of corpus callosum can have various neuropsychiatric manifestations. Following case report highlights the case of a young man presenting with features of recurrent brief depressive disorder, each lasting for about 3 to 7 days, for over a year. He had history of occasional headache and episodes of swooning attack in between, usually precipitated by emotional events. His neuroimaging revealed agenesis of corpus callosum. He was experiencing swooning attacks as he became aware that some ‘unusual’ findings were present in his reports. Recurrent brief depression can be a manifestation of this congenital anomaly, and conversion disorder can be present as comorbid diagnosis perhaps due to ignorance and fear of this apparently innocuous congenital malformation.
doi:10.4103/0253-7176.63580
PMCID: PMC3168092  PMID: 21938102
Conversion disorder; corpus callosum agenesis; recurrent depression
9.  Regulation of Impaired Protein Kinase C Signaling by Chemokines in Murine Macrophages during Visceral Leishmaniasis  
Infection and Immunity  2005;73(12):8334-8344.
The protein kinase C (PKC) family regulates macrophage function involved in host defense against infection. In the case of Leishmania donovani infection, the impairment of PKC-mediated signaling is one of the crucial events for the establishment of parasite into the macrophages. Earlier reports established that C-C chemokines mediated protection against leishmaniasis via the generation of nitric oxide after 48 h. In this study, we investigated the role of MIP-1α and MCP-1 in the regulation of impaired PKC activity in the early hours (6 h) of infection. These chemokines restored Ca2+-dependent PKC activity and inhibited Ca2+-independent atypical PKC activity in L. donovani-infected macrophages under both in vivo and in vitro conditions. Pretreatment of macrophages with chemokines induced superoxide anion generation by activating NADPH oxidase components in infected cells. Chemokine administration in vitro induced the migration of infected macrophages and triggered the production of reactive oxygen species. In vivo treatment with chemokines significantly restricted the parasitic burden in livers as well as in spleens. Collectively, these results indicate a novel regulatory role of C-C chemokines in controlling the intracellular growth and multiplication of L. donovani, thereby demonstrating the antileishmanial properties of C-C chemokines in the disease process.
doi:10.1128/IAI.73.12.8334-8344.2005
PMCID: PMC1307035  PMID: 16299331
10.  Hyperthyroidism in an elderly patient 
Postgraduate Medical Journal  2000;76(899):597-598.
doi:10.1136/pmj.76.899.597a
PMCID: PMC1741720  PMID: 11032535
11.  Surgical Site Infections and Other Postoperative Complications following Prophylactic Anticoagulation in Total Joint Arthroplasty 
PLoS ONE  2014;9(4):e91755.
Background
Anticoagulants reduce the risk of venous thromboembolism (VTE) after total joint replacement. However, concern remains that pharmacologic VTE prophylaxis can lead to bleeding, which may impact on postoperative complications such as infections and reoperations.
Methods and Findings
From the Global Orthopedic Registry (GLORY), we reviewed 3,755 patients in US who elected for primary total hip or knee arthroplasty, received either warfarin or low molecular weight heparin (LMWH) as VTE prophylactics, and had up-to-90-day follow-up after discharge. We compared incidence rates of VTE, infections and other complications between LMWH and warfarin groups, and used multivariate analyses with propensity score weighting to generate the odds ratio (OR). Patients receiving LMWH tended to be older and higher in the American Society of Anesthesiologists grade scores. In contrast, warfarin was used more frequently for hip arthroplasty with longer duration among patients with more pre-existing comorbidity (all P<0.02). A weight variable was created with propensity score to account for differences in covariate distributions. Propensity score-weighted analyses showed no differences in VTE complications. However, compared to warfarin, LMWH was associated with significantly higher rates of bleeding (6.2% vs. 2.1%; OR = 3.82, 95% confidence interval [CI], 2.64 to 5.52), blood transfusion (29.4% vs. 22.0%; OR = 1.75, 95% CI, 1.51 to 2.04), reoperations (2.4% vs. 1.3%; OR = 1.77, 95% CI, 1.07 to 2.93) and infections (1.6% vs. 0.6%; OR = 2.79, 95% CI, 1.42 to 5.45). Similar results were obtained from compliant uses of warfarin (26%) and LMWH (62%) according to clinical guidelines. While surgical site infections were mostly superficial, current study was underpowered to compare incidence rates of deep infections (<1.0%).
Conclusions
Surgical site infections and reoperations in 3 months following primary total joint arthroplasty may be associated with anticoagulant use that exhibited higher bleeding risk. Long-term complications and deep wound infections remain to be studied.
doi:10.1371/journal.pone.0091755
PMCID: PMC3981661  PMID: 24717837
13.  Convergence of Outcomes for Hip Fracture Fixation by Nails and Plates 
Background
Recent popularity of intramedullary nails over sliding hip screws for treatment of intertrochanteric fractures is concerning given the absence of evidence for clinical superiority for nailing yet the presence of reimbursement differences.
Questions/purposes
We describe the change in outcomes of both procedures across a 15-year span and address the role of reimbursements in the setting of shifting patterns in use.
Methods
A 5% sample of Medicare enrollees from 1993 to 2007 was used. Cohorts were generated along diagnostic and procedure codes. Trends in device use by hospital type, surgical times, and rate of revision surgeries were compared. Historic reimbursements were examined.
Results
Since 2005, intramedullary nail fixation has become the more common treatment in government, nonprofit, and for-profit hospitals. Before 1999, intramedullary nailing required 36 minutes longer to perform than plate-and-screw fixation on average, and had higher revision surgery rates (hazard ratio, 2.48; CI, 1.37–4.48) and 1-year mortality (hazard ratio, 1.42; CI, 1.01–1.99). These differences were not significant since 2000. Reimbursement differences have been consistently in favor of intramedullary nails.
Conclusion
Intramedullary nailing of intertrochanteric fractures has become as safe and efficient as the sliding hip screws, but has been more popular since 2006. Reimbursements were favorable for intramedullary nails in times of low and high use. These results argue against the reimbursement difference as the sole driving force for use of intramedullary nails.
Level of Evidence
Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
doi:10.1007/s11999-012-2694-8
PMCID: PMC3586009  PMID: 23184670
14.  Reply 
doi:10.1016/j.mjafi.2013.03.010
PMCID: PMC3862955  PMID: 24600103
15.  Studying the System-Level Involvement of MicroRNAs in Parkinson's Disease 
PLoS ONE  2014;9(4):e93751.
Background
Parkinson's Disease (PD) is a progressive neurologic disorder that affects movement and balance. Recent studies have revealed the importance of microRNA (miR) in PD. However, the detailed role of miR and its regulation by Transcription Factor (TF) remain unexplored. In this work for the first time we have studied TF-miR-mRNA regulatory network as well as miR co-expression network in PD.
Result
We compared the 204 differentially expressed miRs from microarray data with 73 PD related miRs obtained from literature, Human MicroRNA Disease Database and found a significant overlap of 47 PD related miRs (p-value<0.05). Functional enrichment analyses of these 47 common (Group1) miRs and the remaining 157 (Group2) miRs revealed similar kinds of over-representative GO Biological Processes and KEGG pathways. This strengthens the possibility that some of the Group 2 miRs can have functional roles in PD progression, hitherto unidentified in any study. In order to explore the cross talk between TF, miR and target mRNA, regulatory networks were constructed. Study of these networks resulted in 14 Inter-Regulatory hub miRs whereas miR co-expression network revealed 18 co-expressed hub miRs. Of these 32 hub miRs, 23 miRs were previously unidentified with respect to their association with PD. Hierarchical clustering analysis further strengthens the roles of these novel miRs in different PD pathways. Furthermore hsa-miR-92a appeared as novel hub miR in both regulatory and co-expression network indicating its strong functional role in PD. High conservation patterns were observed for most of these 23 novel hub miRs across different species including human. Thus these 23 novel hub miRs can be considered as potential biomarkers for PD.
Conclusion
Our study identified 23 novel miR markers which can open up new avenues for future studies and shed lights on potential therapeutic targets for PD.
doi:10.1371/journal.pone.0093751
PMCID: PMC3972105  PMID: 24690883
16.  “Three-in-one” chromatography-free purification, tag removal, and site-specific modification of recombinant fusion proteins using Sortase A and elastin-like polypeptides 
Applied in tandem, elastin-like polypeptides (ELPs) and the sortase A (SrtA) transpeptidase from Staphylococcus aureus provide a general method for chromatography-free purification of tag-free recombinant proteins and optional, site-specific and homogeneous conjugation of the protein to a small molecule. This system provides an efficient, practical mechanism for generating bioactive proteins and protein-small-molecule combination therapeutics at high yields and purities.
doi:10.1002/anie.201208292
PMCID: PMC3723126  PMID: 23424160
Biotechnology; Proteins; Polymers [bio(org.)]; Anticancer agents
17.  Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis) 
The Journal of pathology  2012;229(2):286-297.
Fibroblasts and myofibroblasts are the key effector cells executing physiologic tissue repair leading to regeneration on one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor Early Growth Response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appear to acts as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signaling, and abrogates the stimulation of fibrotic responses induced by transforming growth factor-ß (TGF-ß). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiologic function for the Egr-1/Nab2 signaling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
doi:10.1002/path.4131
PMCID: PMC3965177  PMID: 23132749
Egr-1; Nab2; TGF-ß; fibrosis; scleroderma; fibroblast; myofibroblast; p300; c-Abl
18.  A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp 
PLoS ONE  2014;9(3):e90766.
Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.
doi:10.1371/journal.pone.0090766
PMCID: PMC3965391  PMID: 24667240
19.  Bis-Enoxacin Blocks Rat Alveolar Bone Resorption from Experimental Periodontitis 
PLoS ONE  2014;9(3):e92119.
Periodontal diseases are multifactorial, caused by polymicrobial subgingival pathogens, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Chronic periodontal infection results in inflammation, destruction of connective tissues, periodontal ligament, and alveolar bone resorption, and ultimately tooth loss. Enoxacin and a bisphosphonate derivative of enoxacin (bis-enoxacin) inhibit osteoclast formation and bone resorption and also contain antibiotic properties. Our study proposes that enoxacin and/or bis-enoxacin may be useful in reducing alveolar bone resorption and possibly bacterial colonization. Rats were infected with 109 cells of polymicrobial inoculum consisting of P. gingivalis, T. denticola, and T. forsythia, as an oral lavage every other week for twelve weeks. Daily subcutaneous injections of enoxacin (5 mg/kg/day), bis-enoxacin (5, 25 mg/kg/day), alendronate (1, 10 mg/kg/day), or doxycycline (5 mg/day) were administered after 6 weeks of polymicrobial infection. Periodontal disease parameters, including bacterial colonization/infection, immune response, inflammation, alveolar bone resorption, and systemic spread, were assessed post-euthanasia. All three periodontal pathogens colonized the rat oral cavity during polymicrobial infection. Polymicrobial infection induced an increase in total alveolar bone resorption, intrabony defects, and gingival inflammation. Treatment with bis-enoxacin significantly decreased alveolar bone resorption more effectively than either alendronate or doxycycline. Histologic examination revealed that treatment with bis-enoxacin and enoxacin reduced gingival inflammation and decreased apical migration of junctional epithelium. These data support the hypothesis that bis-enoxacin and enoxacin may be useful for the treatment of periodontal disease.
doi:10.1371/journal.pone.0092119
PMCID: PMC3956892  PMID: 24638087
20.  Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities 
Nature reviews. Rheumatology  2011;8(1):42-54.
Fibrosis in multiple organs is a prominent pathological finding and distinguishing hallmark of systemic sclerosis (SSc). Findings during the past 5 years have contributed to a more complete understanding of the complex cellular and molecular underpinning of fibrosis in SSc. Fibroblasts, the principal effector cells, are activated in the profibrotic cellular milieu by cytokines and growth factors, developmental pathways, endothelin 1 and thrombin. Innate immune signaling via Toll-like receptors, matrix-generated biomechanical stress signaling via integrins, hypoxia and oxidative stress seem to be implicated in perpetuating the process. Beyond chronic fibroblast activation, fibrosis represents a failure to terminate tissue repair, coupled with an expanded population of mesenchymal cells originating from bone marrow and transdifferentiation of epithelial cells, endothelial cells and pericytes. In addition, studies have identified intrinsic alterations in SSc fibroblasts resulting from epigenetic changes, as well as altered microRNA expression that might underlie the cell-autonomous, persistent activation phenotype of these cells. Precise characterization of the deregulated extracellular and intracellular signaling pathways, mediators and cellular differentiation programs that contribute to fibrosis in SSc will facilitate the development of selective, targeted therapeutic strategies. Effective antifibrotic therapy will ultimately involve novel compounds and repurposing of drugs that are already approved for other indications.
doi:10.1038/nrrheum.2011.149
PMCID: PMC3954787  PMID: 22025123
21.  Protease Inhibitors from Marine Actinobacteria as a Potential Source for Antimalarial Compound 
PLoS ONE  2014;9(3):e90972.
The study was planned to screen the marine actinobacterial extract for the protease inhibitor activity and its anti- Pf activity under in vitro and in vivo conditions. Out of 100 isolates, only 3 isolates exhibited moderate to high protease inhibitor activities on trypsin, chymotrypsin and proteinase K. Based on protease inhibitor activity 3 isolates were chosen for further studies. The potential isolate was characterized by polyphasic approach and identified as Streptomyces sp LK3 (JF710608). The lead compound was identified as peptide from Streptomyces sp LK3. The double-reciprocal plot displayed inhibition mode is non-competitive and it confirms the irreversible nature of protease inhibitor. The peptide from Streptomyces sp LK3 extract showed significant anti plasmodial activity (IC50: 25.78 µg/ml). In in vivo model, the highest level of parasitemia suppression (≈45%) was observed in 600 mg/kg of the peptide. These analyses revealed no significant changes were observed in the spleen and liver tissue during 8 dpi. The results confirmed up-regulation of TGF-β and down regulation of TNF-α in tissue and serum level in PbA infected peptide treated mice compared to PbA infection. The results obtained infer that the peptide possesses anti- Pf activity activity. It suggests that the extracts have novel metabolites and could be considered as a potential source for drug development.
doi:10.1371/journal.pone.0090972
PMCID: PMC3949715  PMID: 24618707
22.  Overview of Platelet Physiology: Its Hemostatic and Nonhemostatic Role in Disease Pathogenesis 
The Scientific World Journal  2014;2014:781857.
Platelets are small anucleate cell fragments that circulate in blood playing crucial role in managing vascular integrity and regulating hemostasis. Platelets are also involved in the fundamental biological process of chronic inflammation associated with disease pathology. Platelet indices like mean platelets volume (MPV), platelets distributed width (PDW), and platelet crit (PCT) are useful as cheap noninvasive biomarkers for assessing the diseased states. Dynamic platelets bear distinct morphology, where α and dense granule are actively involved in secretion of molecules like GPIIb , IIIa, fibrinogen, vWf, catecholamines, serotonin, calcium, ATP, ADP, and so forth, which are involved in aggregation. Differential expressions of surface receptors like CD36, CD41, CD61 and so forth have also been quantitated in several diseases. Platelet clinical research faces challenges due to the vulnerable nature of platelet structure functions and lack of accurate assay techniques. But recent advancement in flow cytometry inputs huge progress in the field of platelets study. Platelets activation and dysfunction have been implicated in diabetes, renal diseases, tumorigenesis, Alzheimer's, and CVD. In conclusion, this paper elucidates that platelets are not that innocent as they keep showing and thus numerous novel platelet biomarkers are upcoming very soon in the field of clinical research which can be important for predicting and diagnosing disease state.
doi:10.1155/2014/781857
PMCID: PMC3960550
23.  miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression 
Cell Death and Differentiation  2012;20(3):430-442.
The spindle assembly checkpoint (SAC) is a ‘wait-anaphase' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b.
doi:10.1038/cdd.2012.135
PMCID: PMC3572219  PMID: 23099851
miR-125b; spindle assembly checkpoint; MAD1; apoptosis; mitotic delay; chromosomal abnormalities
24.  Reduced Arylsulfatase B Activity in Leukocytes from Cystic Fibrosis Patients 
Pediatric pulmonology  2012;48(3):236-244.
Summary
The enzyme Arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) removes 4-sulfate groups from chondroitin-4-sulfate and dermatan sulfate and is required for the degradation of these sulfated glycosaminoglycans (GAGs). Since these GAGs accumulate in patients with Cystic Fibrosis (CF), we investigated the activity of ARSB in leukocytes of patients with CF, to consider if reduced activity of ARSB might contribute to the pathophysiology of CF. Previous cell-based experiments had demonstrated that when the deficiency of the cystic fibrosis transmembrane regulator (CFTR) was corrected in bronchial epithelial cells, the ARSB activity increased significantly. De-identified, citrated blood samples were collected from 16 children with cystic fibrosis and 31 control subjects, seen in the Pediatric Clinic at Rush University Medical Center. Polymorphonuclear (PMN) and mononuclear cell (MC) populations were separated by density gradient, and blinded determinations of ARSB activity were performed using the exogenous substrate 4-methylumbilliferyl sulfate. Interleukin-6 was measured in the plasma samples by ELISA. ARSB activity was significantly less in the PMN and MC from the CF patients than controls (p<0.0001, unpaired t-test, two-tailed). Interleukin-6 levels in plasma were significantly greater in the CF population (p<0.001). Mean age, age range, and male:female ratio of CF patients and controls were similar, and no association of ARSB activity with age, gender, or CFTR genotype was evident. Since recombinant human ARSB is used successfully for replacement therapy in Mucopolysaccharidosis VI, it may be useful to restore ARSB activity to normal levels and increase degradation of sulfated GAGs in CF patients.
doi:10.1002/ppul.22567
PMCID: PMC3638799  PMID: 22550062
25.  Evaluation of Luminex xTAG Gastrointestinal Pathogen Analyte-Specific Reagents for High-Throughput, Simultaneous Detection of Bacteria, Viruses, and Parasites of Clinical and Public Health Importance 
Journal of Clinical Microbiology  2013;51(9):3018-3024.
Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.
doi:10.1128/JCM.00896-13
PMCID: PMC3754681  PMID: 23850948

Results 1-25 (571)