Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Characterization of Platelet-Derived Growth Factor-A Expression in Mouse Tissues Using a lacZ Knock-In Approach 
PLoS ONE  2014;9(8):e105477.
Expression of the platelet-derived growth factor A-chain gene (Pdgfa) occurs widely in the developing mouse, where it is mainly localized to various epithelial and neuronal structures. Until now, in situ mRNA hybridization (ISH) has been the only reliable method to identify Pdgfa expression in tissue sections or whole mount preparations. Validated protocols for in situ detection of PDGF-A protein by immunohistochemistry is lacking. In particular, this has hampered understanding of Pdgfa expression pattern in adult tissues, where ISH is technically challenging. Here, we report a gene targeted mouse Pdgfa allele, Pdgfaex4COIN, which is a combined conditional knockout and reporter allele. Cre-mediated inversion of the COIN cassette inactivates Pdgfa coding while simultaneously activating a beta-galactosidase (lacZ) reporter under endogenous Pdgfa transcription control. The generated Pdgfaex4COIN-INV-lacZ allele can next be used to identify cells carrying a Pdgfa null allele, as well as to map endogenous Pdgfa expression. We evaluated the Pdgfaex4COIN-INV-lacZ allele as a reporter for endogenous Pdgfa expression patterns in mouse embryos and adults. We conclude that the expression pattern of Pdgfaex4COIN-INV-lacZ recapitulates known expression patterns of Pdgfa. We also report on novel embryonic and adult Pdgfa expression patterns in the mouse and discuss their implications for Pdgfa physiology.
PMCID: PMC4148317  PMID: 25166724
2.  Effects of a Disrupted Blood-Brain Barrier on Cholesterol Homeostasis in the Brain* 
The Journal of Biological Chemistry  2014;289(34):23712-23722.
Background: The role of the blood-brain barrier for cholesterol homeostasis in the brain is not known.
Results: Significant influx of cholesterol into the brain and increased efflux of 24(S)-hydroxycholesterol were observed in mice with a defect blood-brain barrier.
Conclusion: A defect blood-brain barrier increases permeability for steroid flux in both directions.
Significance: Elucidation of the role of the blood-brain barrier for brain cholesterol turnover.
The presence of the blood-brain barrier (BBB) is critical for cholesterol metabolism in the brain, preventing uptake of lipoprotein-bound cholesterol from the circulation. The metabolic consequences of a leaking BBB for cholesterol metabolism have not been studied previously. Here we used a pericyte-deficient mouse model, Pdgfbret/ret, shown to have increased permeability of the BBB to a range of low-molecular mass and high-molecular mass tracers. There was a significant accumulation of plant sterols in the brains of the Pdgfbret/ret mice. By dietary treatment with 0.3% deuterium-labeled cholesterol, we could demonstrate a significant flux of cholesterol from the circulation into the brains of the mutant mice roughly corresponding to about half of the measured turnover of cholesterol in the brain. We expected the cholesterol flux into the brain to cause a down-regulation of cholesterol synthesis. Instead, cholesterol synthesis was increased by about 60%. The levels of 24(S)-hydroxycholesterol (24S-OHC) were significantly reduced in the brains of the pericyte-deficient mice but increased in the circulation. After treatment with 1% cholesterol in diet, the difference in cholesterol synthesis between mutants and controls disappeared. The findings are consistent with increased leakage of 24S-OHC from the brain into the circulation in the pericyte-deficient mice. This oxysterol is an efficient suppressor of cholesterol synthesis, and the results are consistent with a regulatory role of 24S-OHC in the brain. To our knowledge, this is the first demonstration that a defective BBB may lead to increased flux of a lipophilic compound out from the brain. The relevance of the findings for the human situation is discussed.
PMCID: PMC4156098  PMID: 24973215
Brain Metabolism; Cholesterol Regulation; Hydroxylase; Neurodegeneration; Sterol
3.  Selective αv integrin depletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs 
Nature medicine  2013;19(12):10.1038/nm.3282.
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl4-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.
PMCID: PMC3855865  PMID: 24216753
4.  Analysis of Mice Lacking the Heparin-Binding Splice Isoform of Platelet-Derived Growth Factor A 
Molecular and Cellular Biology  2013;33(20):4030-4040.
Platelet-derived growth factor A-chain (PDGF-A) exists in two evolutionarily conserved isoforms, PDGF-Along and PDGF-Ashort, generated by alternative RNA splicing. They differ by the presence (in PDGF-Along) or absence (in PDGF-Ashort) of a carboxy-terminal heparin/heparan sulfate proteoglycan-binding motif. In mice, similar motifs present in other members of the PDGF and vascular endothelial growth factor (VEGF) families have been functionally analyzed in vivo, but the specific physiological importance of PDGF-Along has not been explored previously. Here, we analyzed the absolute and relative expression of the two PDGF-A splice isoforms during early postnatal organ development in the mouse and report on the generation of a Pdgfa allele (PdgfaΔex6) incapable of producing PDGF-Along due to a deletion of the exon 6 splice acceptor site. In situations of limiting PDGF-A signaling through PDGF receptor alpha (PDGFRα), or in mice lacking PDGF-C, homozygous carriers of PdgfaΔex6 showed abnormal development of the lung, intestine, and vertebral column, pinpointing developmental processes where PDGF-Along may play a physiological role.
PMCID: PMC3811674  PMID: 23938297
5.  Wtip- and Gadd45a-Interacting Protein Dendrin Is Not Crucial for the Development or Maintenance of the Glomerular Filtration Barrier 
PLoS ONE  2013;8(12):e83133.
Glomerular podocyte cells are critical for the function of the renal ultrafiltration barrier. Especially, the highly specialized cell–cell junction of podocytes, the slit diaphragm, has a central role in the filtration barrier. This is highlighted by the fact that mutations in molecular components of the slit diaphragm, including nephrin and Cd2-associated protein (Cd2ap), result in proteinuric diseases in man. Dendrin is a poorly characterized cytosolic component of the slit diaphragm in where it interacts with nephrin and Cd2ap. Dendrin is highly specific for the podocyte slit diaphragm, suggesting that it has a dedicated role in the glomerular filtration barrier. In this study, we have generated a dendrin knockout mouse line and explored the molecular interactions of dendrin. Dendrin-deficient mice were viable, fertile, and had a normal life span. Morphologically, the glomerulogenesis proceeded normally and adult dendrin-deficient mice showed normal glomerular histology. No significant proteinuria was observed. Following glomerular injury, lack of dendrin did not affect the severity of the damage or the recovery process. Yeast two-hybrid screen and co-immunoprecipitation experiments showed that dendrin binds to Wt1-interacting protein (Wtip) and growth arrest and DNA-damage-inducible 45 alpha (Gadd45a). Wtip and Gadd45a mediate gene transcription in the nucleus, suggesting that dendrin may have similar functions in podocytes. In line with this, we observed the relocation of dendrin to nucleus in adriamycin nephropathy model. Our results indicate that dendrin is dispensable for the function of the normal glomerular filtration barrier and that dendrin interacts with Wtip and Gadd45a.
PMCID: PMC3869763  PMID: 24376653
6.  Development of renal renin-expressing cells does not involve PDGF-B-PDGFR-β signaling 
Physiological Reports  2013;1(5):e00132.
Apart from their endocrine functions renin-expressing cells play an important functional role as mural cells of the developing preglomerular arteriolar vessel tree in the kidney. The recruitment of renin-expressing cells from the mesenchyme to the vessel wall is not well understood. Assuming that it may follow more general lines of pericyte recruitment to endothelial tubes we have now investigated the relevance of the platelet-derived growth factor (PDGF)-B-PDGFR-β signaling pathway in this context. We studied renin expression in kidneys lacking PDGFR-β in these cells and in kidneys with reduced endothelial PDGF-B expression. We found that expression of renin in the kidneys under normal and stimulated conditions was not different from wild-type kidneys. As expected, PDGFR-β immunoreactivity was found in mesangial, adventitial and tubulo-interstitial cells but not in renin-expressing cells. These findings suggest that the PDGF-B-PDGFR-β signaling pathway is not essential for the recruitment of renin-expressing cells to preglomerular vessel walls in the kidney.
PMCID: PMC3841059  PMID: 24303195
Mural cells; PDGF-B; PDGF-β receptor; pericyte; renin
7.  Correction: The importance of microglia in the development of the vasculature in the central nervous system 
Vascular Cell  2013;5:12.
After the publication of this work [1] it was brought to our attention that citations in the article were not correspondingly numbered in the reference list. To avoid confusion, the article is republished here in its entirety, with the citations referenced correctly.
The Publisher and authors apologize to the readers for the inconvenience caused.
The body’s vascular system is thought to have developed in order to supply oxygen and nutrients to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central nervous system (CNS) is a major driving force for the ingression and refinement of the complex vascular bed that serves it. However, even before the establishment of this CNS vascular system, CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the fundamental importance of microglia in shaping CNS vasculature during development, and re-shaping these vessels during pathological insults. In this review, we discuss the origin of CNS microglia and their localization within the brain based on data obtained in mice. We then review evidence supporting a functional role of these microglia in developmental angiogenesis. Although pathologic processes such as CNS ischemia may subvert the developmental functions of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this topic to other recent reviews [2,3].
PMCID: PMC3695819  PMID: 23809768
9.  The importance of microglia in the development of the vasculature in the central nervous system 
Vascular Cell  2013;5:4.
The body’s vascular system is thought to have developed in order to supply oxygen and nutrients to cells beyond the reach of simple diffusion. Hence, relative hypoxia in the growing central nervous system (CNS) is a major driving force for the ingression and refinement of the complex vascular bed that serves it. However, even before the establishment of this CNS vascular system, CNS-specific macrophages (microglia) migrate into the brain. Recent studies in mice point to the fundamental importance of microglia in shaping CNS vasculature during development, and re-shaping these vessels during pathological insults. In this review, we discuss the origin of CNS microglia and their localization within the brain based on data obtained in mice. We then review evidence supporting a functional role of these microglia in developmental angiogenesis. Although pathologic processes such as CNS ischemia may subvert the developmental functions of microglia/macrophages with significant effects on brain neo-angiogenesis, we have left this topic to other recent reviews (Nat Rev Immunol 9:259–270, 2009 and Trends Mol Med 17:743–752, 2011).
PMCID: PMC3583711  PMID: 23422217
10.  The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers 
PLoS ONE  2012;7(11):e50818.
Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19− thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis.
PMCID: PMC3511280  PMID: 23226392
11.  Glomerular Podocytes Express Type 1 Adenylate Cyclase: Inactivation Results in Susceptibility to Proteinuria 
Nephron. Experimental Nephrology  2010;118(3):e39-e48.
The organization of actin cytoskeleton in podocyte foot processes plays a critical role in the maintenance of the glomerular filtration barrier. The cAMP pathway is an important regulator of the actin network assembly in cells. However, the role of the cAMP pathway in podocytes is not well understood. Type 1 adenylate cyclase (Adcy1), previously thought to be specific for neuronal tissue, is a member of the family of enzymes that catalyses the formation of cAMP. In this study, we characterized the expression and role of Adcy1 in the kidney.
Expression of Adcy1 was studied by RT-PCR, Northern blotting and in situ hybridization. The role of Adcy1 in podocytes was investigated by analyzing Adcy1 knockout mice (Adcy1–/–). Results and Conclusion: Adcy1 is expressed in the kidney specifically by podocytes. In the kidney, Adcy1 does not have a critical role in normal physiological functioning as kidney histology and function are normal in Adcy1–/– mice. However, albumin overload resulted in severe albuminuria in Adcy1–/– mice, whereas wild-type control mice showed only mild albumin leakage to urine. In conclusion, we have identified Adcy1 as a novel podocyte signaling protein that seems to have a role in compensatory physiological processes in the glomerulus.
PMCID: PMC3031148  PMID: 21196775
Adc1; Adenylate cyclase; Albuminuria; Glomerular podocytes; Proteinuria
12.  Cardiac malformations in Pdgfrα mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field 
Platelet-derived growth factor receptor alpha (Pdgfrα) identifies cardiac progenitor cells in the posterior part of the second heart field. We aim to elucidate the role of Pdgfrα in this region. Hearts of Pdgfrα deficient mouse embryos (E9.5–E14.5) showed cardiac malformations consisting of atrial and sinus venosus myocardium hypoplasia, including venous valves and sinoatrial node. In vivo staining for Nkx2.5, showed increased myocardial expression in Pdgfrα mutants, confirmed by Western blot analysis. Due to hypoplasia of the primary atrial septum, mesenchymal cap and dorsal mesenchymal protrusion, the atrioventricular septal complex failed to fuse. Impaired epicardial development and severe blebbing coincided with diminished migration of epicardium-derived cells and myocardial thinning, which could be linked to increased WT1 and altered α4-integrin expression. Our data provide novel insight in a possible role for Pdgfrα in transduction pathways that lead to repression of Nkx2.5 and WT1 during development of posterior heart field derived cardiac structures.
PMCID: PMC2911638  PMID: 20658695
Pdgfrα knockout mouse embryos; heart development; dorsal mesenchymal protrusion (DMP); sinus venosus myocardium; epicardium-derived cells (EPDCs)
13.  A Two-Way Communication between Microglial Cells and Angiogenic Sprouts Regulates Angiogenesis in Aortic Ring Cultures 
PLoS ONE  2011;6(1):e15846.
Myeloid cells have been associated with physiological and pathological angiogenesis, but their exact functions in these processes remain poorly defined. Monocyte-derived tissue macrophages of the CNS, or microglial cells, invade the mammalian retina before it becomes vascularized. Recent studies correlate the presence of microglia in the developing CNS with vascular network formation, but it is not clear whether the effect is directly caused by microglia and their contact with the endothelium.
Methodology/Principal Findings
We combined in vivo studies of the developing mouse retina with in vitro studies using the aortic ring model to address the role of microglia in developmental angiogenesis. Our in vivo analyses are consistent with previous findings that microglia are present at sites of endothelial tip-cell anastomosis, and genetic ablation of microglia caused a sparser vascular network associated with reduced number of filopodia-bearing sprouts. Addition of microglia in the aortic ring model was sufficient to stimulate vessel sprouting. The effect was independent of physical contact between microglia and endothelial cells, and could be partly mimicked using microglial cell-conditioned medium. Addition of VEGF-A promoted angiogenic sprouts of different morphology in comparison with the microglial cells, and inhibition of VEGF-A did not affect the microglia-induced angiogenic response, arguing that the proangiogenic factor(s) released by microglia is distinct from VEGF-A. Finally, microglia exhibited oriented migration towards the vessels in the aortic ring cultures.
Microglia stimulate vessel sprouting in the aortic ring cultures via a soluble microglial-derived product(s), rather than direct contact with endothelial cells. The observed migration of microglia towards the growing sprouts suggests that their position near endothelial tip-cells could result from attractive cues secreted by the vessels. Our data reveals a two-way communication between microglia and vessels that depends on soluble factors and should extend the understanding of how microglia promote vascular network formation.
PMCID: PMC3018482  PMID: 21264342
14.  Paracrine signaling by Platelet Derived Growth Factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts 
Cancer research  2009;69(1):369-378.
Cancer results from the concerted performance of malignant cells and stromal cells. Cell types populating the microenvironment are enlisted by the tumor to secrete a host of growth-promoting cues, thus upholding tumor initiation and progression. Platelet-Derived Growth Factors (PDGFs) support the formation of a prominent tumor stromal compartment by as of yet unidentified molecular effectors. While PDGF-CC induces fibroblast reactivity and fibrosis in a range of tissues, little is known about the function of PDGF-CC in shaping the tumor-stroma interplay. Herein, we present evidence for a paracrine signaling network involving PDGF-CC and PDGFR-α in malignant melanoma. Expression of PDGF-C in a mouse model accelerated tumor growth through recruitment and activation of different subsets of cancer-associated fibroblasts. In seeking the molecular identity of the supporting factors provided by cancer-associated fibroblasts we made use of antibody arrays and an in vivo co-injection model to identify osteopontin as the effector of the augmented tumor growth induced by PDGF-CC. In conclusion, we establish paracrine signaling by PDGF-CC as a potential drug target to reduce stromal support in malignant melanoma.
PMCID: PMC2613547  PMID: 19118022
Cancer-associated fibroblast; Malignant melanoma; Osteopontin; Platelet Derived Growth Factor
15.  Generation and Characterization of rgs5 Mutant Mice▿  
Molecular and Cellular Biology  2008;28(7):2324-2331.
Regulators of G-protein signaling (RGS) are involved in a wide variety of functions, including olfaction, vision, and cell migration. RGS5 has a perivascular expression pattern and was recently identified as a marker for brain pericytes. This suggests a role for RGS5 in vascular development and pericyte biology. We have created a mouse line which lacks the rgs5 gene and replaced it with a green fluorescent protein (GFP) reporter (rgs5GFP/GFP). The mice are viable and fertile and display no obvious developmental defects, and the vasculature appears to develop normally with proper pericyte coverage. Also, no differences were observed in the vasculature under pathological conditions, such as tumor growth and oxygen-induced retinopathy. The GFP expression in pericytes of rgs5GFP mice allows detection and sorting of these cells, thereby providing a valuable novel tool for pericyte research.
PMCID: PMC2268431  PMID: 18212066
16.  Pericytes limit tumor cell metastasis 
Journal of Clinical Investigation  2006;116(3):642-651.
Previously we observed that neural cell adhesion molecule (NCAM) deficiency in β tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient β cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied β cell tumorigenesis in primary pericyte-deficient Pdgfbret/ret mice. This resulted in β tumor cell metastases in distant organs and local lymph nodes, demonstrating a role for pericytes in limiting tumor cell metastasis. These data support a new model for how tumor cells trigger metastasis by perturbing pericyte-endothelial cell-cell interactions.
PMCID: PMC1361347  PMID: 16470244
17.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia 
The Journal of Cell Biology  2003;161(6):1163-1177.
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.
PMCID: PMC2172999  PMID: 12810700
VEGF; endothelial cell; filopodia; astrocyte; migration; proliferation
18.  Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors 
Journal of Clinical Investigation  2003;112(8):1142-1151.
Tumor-infiltrating blood vessels deviate morphologically and biochemically from normal vessels, raising the prospect of selective pharmacological targeting. Current antiangiogenic approaches focus mainly on endothelial cells, but recent data imply that targeting pericytes may provide additional benefits. Further development of these concepts will require deeper insight into mechanisms of pericyte recruitment and function in tumors. Here, we applied genetic tools to decipher the function of PDGF-B and PDGF-Rβ in pericyte recruitment in a mouse fibrosarcoma model. In tumors transplanted into PDGF-B retention motif–deficient (pdgf-bret/ret) mice, pericytes were fewer and were partially detached from the vessel wall, coinciding with increased tumor vessel diameter and hemorrhaging. Transgenic PDGF-B expression in tumor cells was able to increase the pericyte density in both WT and pdgf-bret/ret mice but failed to correct the pericyte detachment in pdgf-bret/ret mice. Coinjection of exogenous pericytes and tumor cells showed that pericytes require PDGF-Rβ for recruitment to tumor vessels, whereas endothelial PDGF-B retention is indispensable for proper integration of pericytes in the vessel wall. Our data support the notion that pericytes serve an important function in tumor vessels and highlight PDGF-B and PDGF-Rβ as promising molecular targets for therapeutic intervention.
PMCID: PMC213487  PMID: 14561699
19.  Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular Morphogenesis 
The Journal of Cell Biology  2001;153(3):543-554.
The association of pericytes (PCs) to newly formed blood vessels has been suggested to regulate endothelial cell (EC) proliferation, survival, migration, differentiation, and vascular branching. Here, we addressed these issues using PDGF-B– and PDGF receptor-β (PDGFR-β)–deficient mice as in vivo models of brain angiogenesis in the absence of PCs. Quantitative morphological analysis showed that these mutants have normal microvessel density, length, and number of branch points. However, absence of PCs correlates with endothelial hyperplasia, increased capillary diameter, abnormal EC shape and ultrastructure, changed cellular distribution of certain junctional proteins, and morphological signs of increased transendothelial permeability. Brain endothelial hyperplasia was observed already at embryonic day (E) 11.5 and persisted throughout development. From E 13.5, vascular endothelial growth factor-A (VEGF-A) and other genes responsive to metabolic stress became upregulated, suggesting that the abnormal microvessel architecture has systemic metabolic consequences. VEGF-A upregulation correlated temporally with the occurrence of vascular abnormalities in the placenta and dilation of the heart. Thus, although PC deficiency appears to have direct effects on EC number before E 13.5, the subsequent increased VEGF-A levels may further abrogate microvessel architecture, promote vascular permeability, and contribute to formation of the edematous phenotype observed in late gestation PDGF-B and PDGFR-β knock out embryos.
PMCID: PMC2190573  PMID: 11331305
mice; angiogenesis; pericytes; platelet-derived growth factor B; vascular endothelial growth factor
20.  Leydig Cell Loss and Spermatogenic Arrest in Platelet-Derived Growth Factor (Pdgf)-a–Deficient Mice 
The Journal of Cell Biology  2000;149(5):1019-1026.
Platelet-derived growth factor (PDGF)- A–deficient male mice were found to develop progressive reduction of testicular size, Leydig cells loss, and spermatogenic arrest. In normal mice, the PDGF-A and PDGF-Rα expression pattern showed positive cells in the seminiferous epithelium and in interstitial mesenchymal cells, respectively. The testicular defects seen in PDGF-A−/− mice, combined with the normal developmental expression of PDGF-A and PDGF-Rα, indicate that through an epithelial-mesenchymal signaling, the PDGF-A gene is essential for the development of the Leydig cell lineage. These findings suggest that PDGF-A may play a role in the cascade of genes involved in male gonad differentiation. The Leydig cell loss and the spermatogenic impairment in the mutant mice are reminiscent of cases of testicular failure in man.
PMCID: PMC2174827  PMID: 10831606
PDGF-A; gene targeting; Leydig cell; spermatogenesis; testis
21.  Absence of Epithelial Immunoglobulin a Transport, with Increased Mucosal Leakiness, in Polymeric Immunoglobulin Receptor/Secretory Component–Deficient Mice 
Mucosal surfaces are protected specifically by secretory immunoglobulin A (SIgA) and SIgM generated through external translocation of locally produced dimeric IgA and pentameric IgM. Their active transport is mediated by the epithelial polymeric Ig receptor (pIgR), also called the transmembrane secretory component. Paracellular passive external transfer of systemic and locally produced antibodies also provides mucosal protection, making the biological importance of secretory immunity difficult to assess. Here we report complete lack of active external IgA and IgM translocation in pIgR knockout mice, indicating no redundancy in epithelial transport mechanisms. The knockout mice were of normal size and fertility but had increased serum IgG levels, including antibodies to Escherichia coli, suggesting undue triggering of systemic immunity. Deterioration of their epithelial barrier function in the absence of SIgA (and SIgM) was further attested to by elevated levels of albumin in their saliva and feces, reflecting leakage of serum proteins. Thus, SIgA did not appear to be essential for health under the antigen exposure conditions of these experimental animals. Nevertheless, our results showed that SIgA contributes to maintenance of mucosal homeostasis. Production of SIgA might therefore be a variable in the initiation of human immunopathology such as inflammatory bowel disease or gluten-sensitive enteropathy.
PMCID: PMC2195652  PMID: 10510081
IgA, secretory; receptors, polymeric immunoglobulin; secretory component; immunity, mucosal; mice, knockout
22.  Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin  
The Journal of Cell Biology  1999;145(3):503-514.
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP−/−vim−/−) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP−/−, vimentin−/−, or GFAP−/−vim−/− mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP−/− or vimentin−/− mice, but was impaired in GFAP−/−vim−/− mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.
PMCID: PMC2185074  PMID: 10225952
GFAP; nestin; injury; astrocyte; blood vessel

Results 1-22 (22)