Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Infections with the Microbe Cardinium in the Dolichopodidae and Other Empidoidea 
Maternally transmitted reproductive parasites such as Wolbachia and Cardinium can drastically reshape reproduction in their hosts. Beyond skewing sex ratios towards females, these microbes can also cause cytoplasmic incompatibility. Wolbachia probably infects two thirds of insects, but far less is known about the occurrence or action of other bacteria with potentially similar effects. In contrast with the two more widespread reproductive parasites, Wolbachia and Spiroplasma, far less is known of infections with Cardinium (Bacteroidetes) and possible consequences in the Diptera. Here, in an extensive survey, 244 dipteran species from 67 genera belonging to the Dolichopodidae, Empididae, and Hybotidae were assessed for the presence of the microbe Cardinium. Although 130 of the species screened tested positive (ca. 53%), the presence of Cardinium could only be confirmed in 10 species (ca. 4%) based on analysis of sequences. Numerous additional sequences were found to be assignable to known or unknown Bacteroidetes.
Considering the known issues concerning specificity of Cardinium primers and the phylogenetic uncertainties surrounding this microbe, the actual prevalence of this symbiont is worthy of further scrutiny. Potential directions for future research on Cardinium-host interactions in Diptera and in general are discussed.
PMCID: PMC3740928  PMID: 23909372
reproductive parasite; Rickettsia; Spiroplasma; symbiont; Wolbachia
2.  Real-Time PCR Investigation of Potential Vectors, Reservoirs, and Shedding Patterns of Feline Hemotropic Mycoplasmas▿  
Applied and Environmental Microbiology  2007;73(12):3798-3802.
Three hemotropic mycoplasmas have been identified in pet cats: Mycoplasma haemofelis, “Candidatus Mycoplasma haemominutum,” and “Candidatus Mycoplasma turicensis.” The way in which these agents are transmitted is largely unknown. Thus, this study aimed to investigate fleas, ticks, and rodents as well as saliva and feces from infected cats for the presence of hemotropic mycoplasmas, to gain insight into potential transmission routes for these agents. DNA was extracted from arthropods and from rodent blood or tissue samples from Switzerland and from salivary and fecal swabs from two experimentally infected and six naturally infected cats. All samples were analyzed with real-time PCR, and some positive samples were confirmed by sequencing. Feline hemotropic mycoplasmas were detected in cat fleas and in a few Ixodes sp. and Rhipicephalus sp. ticks collected from animals but not in ticks collected from vegetation or from rodent samples, although the latter were frequently Mycoplasma coccoides PCR positive. When shedding patterns of feline hemotropic mycoplasmas were investigated, “Ca. Mycoplasma turicensis” DNA was detected in saliva and feces at the early but not at the late phase of infection. M. haemofelis and “Ca. Mycoplasma haemominutum” DNA was not amplified from saliva and feces of naturally infected cats, despite high hemotropic mycoplasma blood loads. Our results suggest that besides an ostensibly indirect transmission by fleas, direct transmission through saliva and feces at the early phase of infection could play a role in the epizootiology of feline hemotropic mycoplasmas. Neither the investigated tick nor the rodent population seems to represent a major reservoir for feline hemotropic mycoplasmas in Switzerland.
PMCID: PMC1932730  PMID: 17468284

Results 1-2 (2)