PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (39)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Automobile Traffic around the Home and Attained Body Mass Index: A Longitudinal Cohort Study of Children aged 10–18 Years 
Preventive medicine  2009;50(0 1):S50-S58.
Objectives
The objective of this study is to examine the relationship between measured traffic density near the homes of children and attained body mass index (BMI) over an eight-year follow up.
Methods
Children aged 9–10 years were enrolled across multiple communities in Southern California in 1993 and 1996 (n = 3318). Children were followed until age 18 or high school graduation to collect longitudinal information, including annual height and weight measurements. Multilevel growth curve models were used to assess the association between BMI levels at age 18 and traffic around the home.
Results
For traffic within 150 m around the child’s home, there were significant positive associations with attained BMI for both sexes at age 18. With the 300 m traffic buffer, associations for both male and female growth in BMI were positive, but significantly elevated only in females. These associations persisted even after controlling for numerous potential confounding variables.
Conclusions
This analysis yields the first evidence of significant effects from traffic density on BMI levels at age 18 in a large cohort of children. Traffic is a pervasive exposure in most cities, and our results identify traffic as a major risk factor for the development of obesity in children.
doi:10.1016/j.ypmed.2009.09.026
PMCID: PMC4334364  PMID: 19850068
Traffic; built environment; children; overweight and obesity; geographic information systems; multilevel models; cohort study
2.  Longitudinal Effects of Air Pollution on Exhaled Nitric Oxide: The Children’s Health Study 
OBJECTIVES
To assess the effects of long-term variations in ambient air pollutants on longitudinal changes in exhaled nitric oxide (FeNO), a potentially useful biomarker of eosinophilic airway inflammation, based on data from the southern California Children’s Health Study.
METHODS
Based on a cohort of 1,211 schoolchildren from 8 Southern California communities with FeNO measurements in 2006/07 and 2007/08, regression models adjusted for short-term effects of air pollution were fitted to assess the association between changes in annual long-term exposures and changes in FeNO.
RESULTS
Increases in annual average concentrations of 24-hr average NO2 and PM2.5 (scaled to the interquartile range (IQR) of 1.8 ppb and 2.4 μg/m3, respectively) were associated with a 2.29 ppb (CI=[0.36,4.21]; p =0.02) and a 4.94 ppb (CI=[1.44,8.47]; p = 0.005) increase in FeNO, respectively, after adjustments for short term effects of the respective pollutants. In contrast, changes in annual averages of PM10 and O3 were not significantly associated with changes in FeNO. These findings did not differ significantly by asthma status.
CONCLUSIONS
Changes in annual average exposure to current levels of ambient air pollutants are significantly associated with changes in FeNO levels in children, independent of short-term exposures and asthma status. Use of this biomarker in population-based epidemiologic research has great potential for assessing the impact of changing real world mixtures of ambient air pollutants on children’s respiratory health.
doi:10.1136/oemed-2013-101874
PMCID: PMC4310696  PMID: 24696513
Air pollution; chronic exposures; Children’s respiratory health; Environmental epidemiology; Exhaled nitric oxide; Airway inflammation
3.  MULTIPLE-FLOW EXHALED NITRIC OXIDE, ALLERGY, AND ASTHMA IN A POPULATION OF OLDER CHILDREN 
Pediatric pulmonology  2013;48(9):885-896.
SUMMARY
"Extended" (multiple-flow) measurements of exhaled nitric oxide (FeNO) potentially can distinguish proximal and distal airway inflammation, but have not been evaluated previously in large populations. We performed extended NO testing within a longitudinal study of a school-based population, to relate bronchial flux (J'awNO) and peripheral NO concentration (CalvNO) estimates with respiratory health status determined from questionnaires. We measured FeNO at 30, 50, 100, and 300 ml/sec in 1640 subjects aged 12–15 from 8 communities, then estimated J'awNO and CalvNO from linear and nonlinear regressions of NO output vs. flow. J'awNO, as well as FeNO at all flows, showed influences of asthma, allergy, Asian or African ancestry, age, and height (positive), and of weight (negative), generally corroborating past findings. By contrast, CalvNO results were inconsistent across different extended NO regression models, and appeared more sensitive to small measurement artifacts. Conclusions: Extended NO testing is feasible in field surveys of young populations. In interpreting results, size, age, and ethnicity require attention, as well as instrumental and environmental artifacts. J'awNO and conventional FeNO provide similar information, probably reflecting proximal-airway inflammation. CalvNO may give additional information relevant to peripheral-airway, alveolar, or systemic pathology. However, it needs additional research, including testing of populations with independently verifiable peripheral or systemic pathology, to optimize measurement technique and interpretation.
doi:10.1002/ppul.22708
PMCID: PMC3748140  PMID: 23687084
exhaled nitric oxide; airway inflammation; airways; asthma; allergy; epidemiology; public health; population survey
4.  The association between contextual socioeconomic factors and prevalent asthma in a cohort of southern California school children 
Social science & medicine (1982)  2007;65(8):1792-1806.
Spatial variation in childhood asthma and a recent increase in prevalence indicate that environmental factors play a significant role in the etiology of this important disease. Socioeconomic position (SEP) has been associated inversely and positively with childhood asthma. These contradictory results indicate a need for systematic research about SEP and asthma. Pathways have been suggested for effects of SEP on asthma at both the individual and community level. We examined the relationship of prevalent asthma to community-level indicators of SEP among 5762 children in 12 Southern California, using a multilevel random effects model. Estimates of community-level SEP were derived by summarizing census block group-level data using a novel method of weighting by the proportion of the block groups included in a community-specific bounding rectangle that contained 95% of local study subjects. Community characteristics included measures of male unemployment, household income, low education (i.e. no high school diploma), and poverty. There was a consistent inverse association between male unemployment and asthma across the inter-quartile range of community unemployment rates, indicating that asthma rates increase as community SEP increases. The results were robust to individual-level confounding, methods for summarizing census block group data to the community level, scale of analysis (i.e. community-level vs. neighborhood-level) and the modeling algorithm. The positive association between SEP and prevalent childhood asthma might be explained by differential access to medical care that remains unmeasured, by the hygiene hypothesis (e.g. lower SES may associate with higher protective exposures to endotoxin in early life), or by SEP acting as a proxy for unmeasured neighborhood characteristics.
doi:10.1016/j.socscimed.2007.05.048
PMCID: PMC4098912  PMID: 17658674
USA; neighborhood; childhood asthma; multi-level modeling; socioeconomic position; contextual factors
5.  ASTHMA AND SCHOOL COMMUTING TIME 
Objectives
This study examined associations of asthma with school commuting time.
Methods
Time on likely school commute route was used as a proxy for on-road air pollution exposure among 4741 elementary school children at enrollment into the Children's Health Study. Lifetime asthma and severe wheeze (including multiple attacks, nocturnal or with shortness of breath) were reported by parents.
Results
In asthmatic children, severe wheeze was associated with commuting time (odds ratio (OR) 1.54 across the 9-minute 5%-95% exposure distribution; 95% confidence interval (CI) 1.01,2.36). The association was stronger in analysis restricted to asthmatic children with commuting times five minutes or longer (OR 1.97; 95% CI 1.02,3.77). No significant associations were observed with asthma prevalence.
Conclusions
Among asthmatics, severe wheeze was associated with relatively short school commuting times. Further investigation of effects of on-road pollutant exposure is warranted.
doi:10.1097/JOM.0b013e3181ebf1a9
PMCID: PMC4083079  PMID: 20657304
air pollution; asthma; child; epidemiology; traffic; commuting
6.  Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis 
Environmental Health  2014;13:49.
Background
Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5–11 years.
Methods
Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002–2010 and analyzed in 2011–12.
Results
Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models.
Conclusions
Traffic pollution was positively associated with growth in BMI in children aged 5–11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children.
doi:10.1186/1476-069X-13-49
PMCID: PMC4106205  PMID: 24913018
Childhood obesity; Air pollution; Traffic; California
8.  Exhaled Nitric Oxide, Susceptibility and New-Onset Asthma in the Children’s Health Study 
The European respiratory journal  2010;37(3):523-531.
A substantial body of evidence suggests an etiologic role of inflammation and oxidative/nitrosative stress in asthma pathogenesis. Fractional concentration of nitric oxide in exhaled air (FeNO) may provide a non-invasive marker of oxidative/nitrosative stress and aspects of airway inflammation. We examined whether children with elevated FeNO are at increased risk for new-onset asthma.
We prospectively followed 2206 asthma-free children (age 7–10 years) who participated in the Children’s Health Study. We measured FeNO and followed these children for three years to ascertain incident asthma cases. Cox proportional hazard models were fitted to examine the association between FeNO and new-onset asthma.
We found that FeNO was associated with increased risk of new-onset asthma. Children with the highest quartile of FeNO had more than a two-fold increased risk of new-onset asthma compared to those with the lowest quartile (hazard ratio: 2.1; 95% confidence interval: 1.3–3.5). This effect did not vary by child’s history of respiratory allergic symptoms. However, the effect of elevated FeNO on new-onset asthma was most apparent among those without a parental history of asthma.
Our results indicate that children with elevated FeNO are at increased risk for new-onset asthma, especially if they have no parental history of asthma.
doi:10.1183/09031936.00021210
PMCID: PMC4020940  PMID: 20634264
Incident Asthma; Exhaled Nitric Oxide; Airway Inflammation
9.  Inflammatory Cytokine Response to Ambient Particles Varies due to Field Collection Procedures 
In vitro assays of biological activity induced by particulate matter (PM) are a tool for investigating mechanisms of PM health effects. They have potential application to exposure assessment in chronic disease epidemiology. However, there has been little reporting of the impact of real-world PM collection techniques on assay results. Therefore, we examined the effect of sampling duration and postsampling delays in freezing on PM-induced biological activity. Duplicate samples of respirable ambient Los Angeles PM were collected on polyurethane foam filters during 17 days and during three contemporaneous consecutive shorter periods. After collection, one duplicate was stored at ambient temperature for 24 hours before freezing; the other was frozen immediately. Cytokine response (IL-1β, IL-6, IL-8, and TNF-α) to PM aqueous extract was assessed in THP-1 cells, a model for evaluating monocyte/macrophage lineage cell responses. There was consistent 3- to 4-fold variation in PM-induced cytokine levels across the three collection intervals. Compared with levels induced by PM pooled across the three periods, continuously collected PM-induced levels were reduced by 25% (IL-6) to 39% (IL-8). The pattern of cytokine gene expression response was similar. Cytokine level variation by time to freezing was not statistically significant. PM-induced inflammatory response varied substantially over a weekly time scale. We conclude that long PM sampling interval induced less activity than the average of equivalent shorter consecutive sampling intervals. Time to freezing was less important. Implications for development of metrics of long-term spatial variation in biological exposure metrics for study of chronic disease merit further investigation.
doi:10.1165/rcmb.2012-0320OC
PMCID: PMC3653609  PMID: 23306836
air pollution; toxicology; exposure assessment; epidemiology
10.  Household endotoxin levels and the risk of non-Hodgkin lymphoma 
Cancer causes & control : CCC  2013;24(2):357-364.
Objective
Endotoxin, a component of the outer membrane of gram-negative bacteria, elicits a strong innate and inflammatory immune response associated with secretion of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α). Because TNF-α polymorphisms that increase TNF-α production are associated with an increased risk of non-Hodgkin lymphoma (NHL), we hypothesized that increased levels of household endotoxin would be associated with an increased NHL risk.
Methods
We evaluated this association in the National Cancer Institute/Surveillance, Epidemiology and End Result (NCI/SEER) NHL multi-center population-based case-control study. Used vacuum cleaner bags were collected from participants during a home interview. Dust samples from the bags of 594 cases and 442 controls were analyzed for endotoxin (Endotoxin Unit [EU]/mg of dust) using the kinetic chromogenic Limulus amebocyte lysate assay. Multivariable logistic regression was used to estimate the effect of endotoxin on NHL risk adjusted for age, sex, race, education, study center, and farm exposure.
Results
Endotoxin was not associated with NHL overall (odds ratio [OR] for highest quartile of endotoxin levels = 0.81, 95% confidence interval [CI]= 0.55,1.20; P for trend=0.35), or with diffuse large B-cell lymphoma (OR= 0.63, 95% CI= 0.34, 1.16; P= 0.31) or follicular lymphoma (OR= 0.1.07, 95% CI=0.61, 1.89; P=0.73) subtypes. Both working and living on a farm were associated with higher household endotoxin levels compared to never working (P=0.009) or living (P=0.01) on a farm. Excluding farmers from the analysis did not change the results.
Conclusions
We found no evidence of a role for household endotoxin in NHL etiology.
doi:10.1007/s10552-012-0121-9
PMCID: PMC3800025  PMID: 23277417
Endotoxin; Non-Hodgkin lymphoma; Epidemiology; Farming; Risk; Case-control
11.  Estimation of Parameters in the Two-Compartment Model for Exhaled Nitric Oxide 
PLoS ONE  2014;9(1):e85471.
The fractional concentration of exhaled nitric oxide (FeNO) is a biomarker of airway inflammation that is being increasingly considered in clinical, occupational, and epidemiological applications ranging from asthma management to the detection of air pollution health effects. FeNO depends strongly on exhalation flow rate. This dependency has allowed for the development of mathematical models whose parameters quantify airway and alveolar compartment contributions to FeNO. Numerous methods have been proposed to estimate these parameters using FeNO measured at multiple flow rates. These methods—which allow for non-invasive assessment of localized airway inflammation—have the potential to provide important insights on inflammatory mechanisms. However, different estimation methods produce different results and a serious barrier to progress in this field is the lack of a single recommended method. With the goal of resolving this methodological problem, we have developed a unifying framework in which to present a comprehensive set of existing and novel statistical methods for estimating parameters in the simple two-compartment model. We compared statistical properties of the estimators in simulation studies and investigated model fit and parameter estimate sensitivity across methods using data from 1507 schoolchildren from the Southern California Children's Health Study, one of the largest multiple flow FeNO studies to date. We recommend a novel nonlinear least squares model with natural log transformation on both sides that produced estimators with good properties, satisfied model assumptions, and fit the Children's Health Study data well.
doi:10.1371/journal.pone.0085471
PMCID: PMC3894971  PMID: 24465571
12.  Childhood Air Pollutant Exposure and Carotid Artery Intima-Media Thickness in Young Adults 
Circulation  2012;126(13):1614-1620.
Background
Exposure to ambient air pollutants increases risk for cardiovascular health outcomes in adults. The contribution of childhood air pollutant exposure to cardiovascular health has not been thoroughly evaluated.
Methods and results
The Testing Responses on Youth study consists of 861 college students recruited from the University of Southern California in 2007–2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery intima-media thickness (CIMT) were assessed. Self-administered questionnaires collected information about health and socio-demographic characteristics and a 12-hr fasting blood sample was drawn for lipid and biomarker analyses. Residential addresses were geocoded and used to assign cumulative air pollutant exposure estimates based on data derived from the U.S. Environmental Protection Agency’s Air Quality System (AQS) database. The associations between CIMT and air pollutants were assessed using linear regression analysis. Mean CIMT was 603 μm (± 54 SD). A 2 standard deviation (SD) increase in childhood (aged 0–5 years) or elementary school (aged 6–12) O3 exposure was associated with a 7.8 μm (95% CI −0.3, 15.9) or 10.1 μm (95% CI 1.8, 18.5) higher CIMT, respectively. Lifetime exposure to O3 showed similar but non-significant associations. No associations were observed for PM2.5, PM10 or NO2 although adjustment for these pollutants strengthened the childhood O3 associations.
Conclusion
Childhood exposure to O3 may be a novel risk factor for CIMT in a healthy population of college students. Regulation of air pollutants and efforts that focus on limiting childhood exposures continue to be important public health goals.
doi:10.1161/CIRCULATIONAHA.112.096164
PMCID: PMC3474843  PMID: 22896588
atherosclerosis; cardiovascular diseases; carotid arteries; epidemiology; pediatrics
13.  Organized Physical Activity in Young School Children Predicts Subsequent 4-Year Change in Body Mass Index 
Objective
To determine whether participation in organized outdoor team sports and structured indoor non-school activity programs in kindergarten and first grade predicted subsequent 4-year change in Body Mass Index (BMI) across the adiposity rebound period of childhood.
Design
Longitudinal cohort study.
Setting
Forty-five schools in 13 communities across Southern California.
Participants
Largely Hispanic and non-Hispanic white children (N = 4,550; average age at study entry 6.60 years, standard deviation 0.65).
Main Exposures
Parents completed questionnaires assessing physical activity, demographic characteristics and other relevant covariates at baseline. Data on built and social environmental variables were linked to the neighborhood around children’s homes using geographical information systems (GIS).
Main Outcome Measures
Each child’s height and weight were measured annually during 4-years of follow-up.
Results
After adjusting for several confounders, BMI increased at a 0.05 unit per year slower rate for children who participated in outdoor organized team sports at least twice per week as compared to children who did not. For participation in each additional indoor non-school structured activity classes, lessons, and program, BMI increased at a 0.05 unit per year slower rate, and the attained BMI level at age 10 was 0.48 units lower.
Conclusions
Engagement in organized sports and activity programs as early as kindergarten and the first grade may result in smaller increases in BMI during the adiposity rebound period of childhood.
doi:10.1001/archpediatrics.2012.20
PMCID: PMC3415326  PMID: 22869403
14.  Prenatal Exposure to Urban Air Nanoparticles in Mice Causes Altered Neuronal Differentiation and Depression-Like Responses 
PLoS ONE  2013;8(5):e64128.
Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m3) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.
doi:10.1371/journal.pone.0064128
PMCID: PMC3667185  PMID: 23734187
15.  Carotid artery intima-media thickness in college students: race/ethnicity matters 
Atherosclerosis  2011;217(2):441-446.
Objective
Racial/ethnic differences in common carotid artery intima-media thickness (CIMT) and in risk factors associated with CIMT have been predominantly observed in middle-aged and older individuals. We aimed to characterize racial/ethnic differences CIMT and other cardiovascular risk factors in a healthy, young-adult population.
Methods
College students were recruited as part of a study to characterize determinants of atherogenesis. Students were eligible if they were lifetime non-smokers, lived in the United States since six months of age, and attended high school in the United States. Blood pressure, heart rate, height, and weight were measured, B-mode carotid ultrasound was performed, questionnaires were administered and a 12-hr fasting blood sample was collected. Associations between CIMT and other variables were assessed in 768 students aged 18 to 25 years using linear regression analysis.
Results
In models adjusted for common cardiovascular risk factors, sex exhibited the strongest influence on CIMT, with men having 15.4 µm larger CIMT compared to women (95%CI 6.6, 24.2). Race/ethnicity was also strongly associated with CIMT. African Americans had 17.3 µm greater CIMT (95% CI −0.3, 34.8) compared to non Hispanic Whites, whereas Asians and Hispanic Whites had 14.3 (95%CI −24.3, −4.4) and 15.4 (95%CI −26.2, −4.7) µm smaller CIMT, respectively. BMI and systolic blood pressure were positively associated with CIMT.
Conclusion
The risk factors associated with atherogenesis later in life are already present and observable in college-aged young adults, so targeted campaigns to reduce life-long cardiovascular disease burden should be initiated earlier in life to improve public health.
doi:10.1016/j.atherosclerosis.2011.05.022
PMCID: PMC3146627  PMID: 21679950
CIMT; SBP; race; ethnicity; young adults
16.  Randomized Controlled Trial to Improve Adiposity, Inflammation, and Insulin Resistance in Obese African-American and Latino Youth 
Obesity (Silver Spring, Md.)  2011;20(4):811-818.
The purpose of this study was to examine ethnic differences in the metabolic responses to a 16-week intervention designed to improve insulin sensitivity (SI), adiposity, and inflammation in obese African-American and Latino adolescents. A total of 100 participants (African Americans: n = 48, Latino: n = 52; age: 15.4 ± 1.1 years, BMI percentile: 97.3 ± 3.3) were randomly assigned to interventions: control (C; n = 30), nutrition (N; n = 39, 1×/week focused on decreasing sugar and increasing fiber intake), or nutrition + strength training (N+ST; n = 31, 2×/week). The following were measured at pre- and postintervention: strength, dietary intake, body composition (dual-energy X-ray absorptiometry/magnetic resonance imaging) and glucose/insulin indexes (oral glucose tolerance test (OGTT)/intravenous glucose tolerance test (IVGTT)) and inflammatory markers. Overall, N compared to C and N+ST reported significant improvements in SI (+16.5% vs. −32.3% vs. −6.9% respectively, P < 0.01) and disposition index (DI: +15.5% vs. −14.2% vs. −13.7% respectively, P < 0.01). N+ST compared to C and N reported significant reductions in hepatic fat fraction (HFF: −27.3% vs. −4.3% vs. 0% respectively, P < 0.01). Compared to N, N+ST reported reductions in plasminogen activator inhibitor-1 (PAI-1) (−38.3% vs. +1.0%, P < 0.01) and resistin (−18.7% vs. +11.3%, P = 0.02). There were no intervention effects for all other measures of adiposity or inflammation. Significant intervention by ethnicity interactions were found for African Americans in the N group who reported increases in total fat mass, 2-h glucose and glucose incremental areas under the curve (IAUC) compared to Latinos (P’s < 0.05). These interventions yielded differential effects with N reporting favorable improvements in SI and DI and N+ST reporting marked reductions in HFF and inflammation. Both ethnic groups had significant improvements in metabolic health; however some improvements were not seen in African Americans.
doi:10.1038/oby.2010.343
PMCID: PMC3106142  PMID: 21293446
17.  Ethnic Differences in the Effect of Asthma on Pulmonary Function in Children 
Rationale: The impact of asthma on chronic lung function deficits is well known. However, there has been little study of ethnic differences in these asthma-associated deficits.
Objectives: To examine whether there are ethnic differences in the effects of asthma on children's lung function.
Methods: We evaluated the impact of asthma on lung function in 3,245 Hispanic and non-Hispanic white school children (age 10–18 yr) in a longitudinal analysis of the Southern California Children's Health Study. Sex-specific mixed-effects regression spline models were fitted separately for each ethnic group.
Measurements and Main Results: Large deficits in flows were observed among children with asthma diagnosed before age 4 years regardless of ethnicity. Hispanic girls with asthma had greater deficits in flows than non-Hispanic girls and were largest for maximal midexpiratory flow (−5.13% compared with −0.58%, respectively). A bigger impact of asthma in Hispanic girls was also found for FEV1, FEF75, and PEF (P value 0.04, 0.07, and 0.005, respectively). These ethnic differences were limited to girls diagnosed after age 4 years. In boys, asthma was also associated with greater deficits in flows among Hispanic than in non-Hispanic white children (differences that were not statistically significant). Ethnic differences in prevalence of pets and pests in the home, health insurance coverage, parental education, and smoking did not explain the pattern of lung function differences.
Conclusions: Larger asthma-associated lung function deficits in Hispanics, especially among girls, merit further investigation to determine public health implications and to identify causes amenable to intervention.
doi:10.1164/rccm.200912-1863OC
PMCID: PMC3081280  PMID: 20889910
Hispanics; non-Hispanic whites; pulmonary function; asthma
18.  Genetic Variations in Nitric Oxide Synthase and Arginase Influence Exhaled Nitric Oxide Levels in Children 
Allergy  2010;66(3):412-419.
Background
Exhaled nitric oxide (FeNO) is a biomarker of airway inflammation. In the nitric oxide (NO) synthesis pathway, nitric oxide synthases (encoded by NOS1, NOS2A and NOS3) and arginases (encoded by ARG1 and ARG2) compete for L-arginine. Although FeNO levels are higher in children with asthma/allergy, influence of these conditions on the relationships between variations in these genes and FeNO remains unknown. The aims of the study were to evaluate the role of genetic variations in nitric oxide synthases and arginases on FeNO in children and to assess the influence of asthma and respiratory allergy on these genetic associations.
Methods
Among children (6–11 years) who participated in the southern California Children’s Health Study, variations in these five genetic loci were characterized by tagSNPs. FeNO was measured in two consecutive years (N = 2298 and 2515 in Years 1 and 2, respectively). Repeated measures analysis of variance was used to evaluate the associations between these genetic variants and FeNO.
Results
Sequence variations in the NOS2A and ARG2 loci were globally associated with FeNO (P = 0.0002 and 0.01, respectively). The ARG2 association was tagged by intronic variant rs3742879 with stronger association with FeNO in asthmatic children (P-interaction = 0.01). The association of a NOS2A promoter haplotype with FeNO varied significantly by rs3742879 genotypes and by asthma.
Conclusion
Variants in the NO synthesis pathway genes jointly contribute to differences in FeNO concentrations. Some of these genetic influences were stronger in children with asthma. Further studies are required to confirm our findings.
doi:10.1111/j.1398-9995.2010.02492.x
PMCID: PMC3058253  PMID: 21039601
airway inflammation; asthma; biomarker; exhaled nitric oxide; nitrosative stress
19.  Cryptorchidism and testicular germ cell tumors: comprehensive meta-analysis reveals that association between these conditions diminished over time and is modified by clinical characteristics 
Introduction: Risk of testicular germ cell tumors (TGCT) is consistently associated with a history of cryptorchidism (CO) in epidemiologic studies. Factors modifying the association may provide insights regarding etiology of TGCT and suggest a basis for individualized care of CO. To identify modifiers of the CO-TGCT association, we conducted a comprehensive, quantitative evaluation of epidemiologic data.
Materials and Methods: Human studies cited in PubMed or ISI Web of Science indices through December 2011 and selected unpublished epidemiologic data were reviewed to identify 35 articles and one unpublished dataset with high-quality data on the CO-TGCT association. Association data were extracted as point and 95% confidence interval estimates of odds ratio (OR) or standardized incidence ratio (SIR), or as tabulated data. Values were recorded for each study population, and for subgroups defined by features of study design, CO and TGCT. Extracted data were used to estimate summary risk ratios (sRR) and evaluate heterogeneity of the CO-TGCT association between subgroups.
Results: The overall meta-analysis showed that history of CO is associated with four-fold increased TGCT risk [RR = 4.1(95% CI = 3.6–4.7)]. Subgroup analyses identified five determinants of stronger association: bilateral CO, unilateral CO ipsilateral to TGCT, delayed CO treatment, TGCT diagnosed before 1970, and seminoma histology.
Conclusions: Modifying factors may provide insight into TGCT etiology and suggest improved approaches to managing CO. Based on available data, CO patients and their parents or caregivers should be made aware of elevated TGCT risk following orchidopexy, regardless of age at repair, unilateral vs. bilateral non-descent, or position of undescended testes.
doi:10.3389/fendo.2012.00182
PMCID: PMC3574983  PMID: 23423470
testicular neoplasms; cryptorchidism; seminoma; non-seminoma; meta-analysis
20.  Residential Traffic-Related Pollution Exposures and Exhaled Nitric Oxide in the Children’s Health Study 
Environmental Health Perspectives  2011;119(10):1472-1477.
Background: The fractional concentration of nitric oxide in exhaled air (FeNO) potentially detects airway inflammation related to air pollution exposure. Existing studies have not yet provided conclusive evidence on the association of FeNO with traffic-related pollution (TRP).
Objectives: We evaluated the association of FeNO with residential TRP exposure in a large cohort of children.
Methods: We related FeNO measured on 2,143 children (ages 7–11 years) who participated in the Southern California Children’s Health Study (CHS) to five classes of metrics of residential TRP: distances to freeways and major roads; length of all and local roads within circular buffers around the home; traffic densities within buffers; annual average line source dispersion modeled nitrogen oxides (NOx) from freeways and nonfreeway roads; and predicted annual average nitrogen oxide, nitrogen dioxide, and NOx from a model based on intracommunity sampling in the CHS.
Results: In children with asthma, length of roads was positively associated with FeNO, with stronger associations in smaller buffers [46.7%; 95% confidence interval (CI), 14.3–88.4], 12.4% (95% CI, –8.8 to 38.4), and 4.1% (95% CI, –14.6 to 26.8) higher FeNO for 100-, 300-, and 1,000-m increases in the length of all roads in 50-, 100-, and 200-m buffers, respectively. Other TRP metrics were not significantly associated with FeNO, even though the study design was powered to detect exposures explaining as little as 0.4% of the variation in natural log-transformed FeNO (R2 = 0.004).
Conclusion: Length of road was the only indicator of residential TRP exposure associated with airway inflammation in children with asthma, as measured by FeNO.
doi:10.1289/ehp.1103516
PMCID: PMC3230449  PMID: 21708511
air pollution; airway inflammation; children’s respiratory health; exhaled nitric oxide; traffic
21.  Increased physical activity and reduced adiposity in overweight Hispanic adolescents 
Purpose
Objectives of this study were to examine 1) whether changes in total PA (counts/minute, cpm) and time spent in moderate to vigorous PA (MVPA) are associated with changes in adiposity and 2) whether energy intake influences the relationship between changes in PA and changes in adiposity in overweight Hispanic adolescents.
Methods
Analysis included 38 overweight (BMI ≥ 85th %ile) Hispanic adolescents with complete pre- and post-test data on relevant variables after participating in a 16-week intervention. The intervention treatment did not influence physical activity, so the sample was combined and randomization group was adjusted for in the analysis. Body composition by DEXA, 7-day physical activity by accelerometry, and dietary intake by 3-day diet records were assessed pre- and post-intervention.
Results
Within individuals, the mean increase of PA (n=19) and mean decrease of PA (n=19) was approximately 105 cpm. A 100 cpm increase in total PA was associated with a decrease of 1.3 kg fat mass and 0.8% body fat after adjusting for pre-test adiposity, PA, age, sex, and treatment (p < 0.05). Controlling for energy intake modestly strengthened the relationships between total PA and fat mass and percent body fat. Changes in MVPA were not related to changes in adiposity after controlling for total PA (p>0.05).
Conclusion
Increasing total PA by 28% (100 cpm) was associated with a decrease of 1.4 kg of fat mass and 1% body fat over 16 weeks in overweight Hispanic adolescents independent of intervention group assignment. Increases in total physical activity, as compared to MVPA, may be sufficient to improve body composition in overweight Hispanic adolescents.
doi:10.1249/MSS.0b013e3181b9c45b
PMCID: PMC3163456  PMID: 19952807
Obesity; children; Hispanic; accelerometer; youth; DEXA
22.  Using tensor product splines in modeling exposure–time–response relationships: Application to the Colorado Plateau Uranium Miners cohort 
Statistics in medicine  2008;27(26):5484-5496.
SUMMARY
An adequate depiction of exposure–time–response relationships is important in assessing public health implications of an occupational or environmental exposure. Recent advances have focused on flexible modeling of the overall shape of latency. Methods are needed to allow for varying shapes of latency under different exposure profiles. A tensor product spline model is proposed for describing exposure–response relationships for protracted time-dependent occupational exposure histories in epidemiologic studies. The methods use flexible multi-dimensional techniques to jointly model age, latency and exposure–response effects. In analyzing data from the Colorado Plateau Uranium Miners cohort, a model that allows for varying exposure-dependent latency shapes is found to be superior to models that only allowed for an overall latency curve. Specifically, the model suggests that, at low exposure levels risk increased at short latencies followed by a slow decline for longer latency periods. On the other hand, risk was higher but did not change much by latency for higher exposure levels. The proposed methodology has the advantage of allowing for latency functions that vary by exposure levels and, conversely, exposure–response relationships that are influenced by the latency structure.
doi:10.1002/sim.3354
PMCID: PMC3032879  PMID: 18613262
latency; nested case control; occupational exposure; relative risk
23.  Functional Variants in the Catalase and Myeloperoxidase Genes, Ambient Air Pollution, and Respiratory-related School Absences: An Example of Epistasis in Gene-Environment Interactions 
American Journal of Epidemiology  2009;170(12):1494-1501.
The individual effect of functional single nucleotide polymorphisms within the catalase and myeloperoxidase genes (CAT and MPO) has been studied in relation to asthma; however, their interrelationship with ambient air pollution exposures has yet to be determined. The authors investigated the interrelationships between variants in CAT and MPO, ambient air pollutants, and acute respiratory illness. Health information, air pollution, and incident respiratory-related school absences were ascertained in January–June 1996 for 1,136 Hispanic and non-Hispanic white US elementary schoolchildren as part of the prospective Children's Health Study. Functional and tagging single nucleotide polymorphisms for the CAT and MPO loci were genotyped. The authors found epistasis between functional polymorphisms in the CAT/MPO loci, which differed by levels of oxidant-stress-producing air pollutants. Risk of respiratory-related school absences was elevated for children with the CAT (G/G) and MPO (G/A or A/A) genes (relative risk = 1.35, 95% confidence interval: 1.03, 1.77; P-interaction = 0.005). The epistatic effect of CAT and MPO variants was most evident in communities exhibiting high ambient ozone levels (P-interaction = 0.03). The association of respiratory-illness absences with functional variants in CAT and MPO that differ by air pollution levels illustrates the need to consider genetic epistasis in assessing gene-environment interactions.
doi:10.1093/aje/kwp310
PMCID: PMC2800273  PMID: 19897513
air pollution; catalase; epistasis, genetic; peroxidase; respiratory tract infections
24.  Relationship between air pollution, lung function and asthma in adolescents 
Thorax  2007;62(11):957-963.
Background
The interrelationships between air pollution, lung function and the incidence of childhood asthma have yet to be established. A study was undertaken to determine whether lung function is associated with new onset asthma and whether this relationship varies by exposure to ambient air pollutants.
Methods
A cohort of children aged 9–10 years without asthma or wheeze at study entry were identified from the Children's Health Study and followed for 8 years. The participants resided in 12 communities with a wide range of ambient air pollutants that were measured continuously. Spirometric testing was performed and a medical diagnosis of asthma was ascertained annually. Proportional hazard regression models were fitted to investigate the relationship between lung function at study entry and the subsequent development of asthma and to determine whether air pollutants modify these associations.
Results
The level of airway flow was associated with new onset asthma. Over the 10th–90th percentile range of forced expiratory flow over the mid‐range of expiration (FEF25–75, 57.1%), the hazard ratio (HR) of new onset asthma was 0.50 (95% CI 0.35 to 0.71). This protective effect of better lung function was reduced in children exposed to higher levels of particulate matter with an aerodynamic diameter <2.5 μm (PM2.5). Over the 10th–90th percentile range of FEF25–75, the HR of new onset asthma was 0.34 (95% CI 0.21 to 0.56) in communities with low PM2.5 (<13.7 μg/m3) and 0.76 (95% CI 0.45 to 1.26) in communities with high PM2.5 (⩾13.7 μg/m3). A similar pattern was observed for forced expiratory volume in 1 s. Little variation in HR was observed for ozone.
Conclusion
Exposure to high levels of PM2.5 attenuates the protective effect of better lung function against new onset asthma.
doi:10.1136/thx.2007.078964
PMCID: PMC2117135  PMID: 17517830
25.  Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School 
Environmental Health Perspectives  2010;118(7):1021-1026.
Background
Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma.
Objectives
We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools.
Methods
Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children’s Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric.
Results
Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25–1.82] and near schools (HR 1.45; 95% CI, 1.06–1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18–4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69–2.71).
Conclusions
Traffic-related pollution exposure at school and homes may both contribute to the development of asthma.
doi:10.1289/ehp.0901232
PMCID: PMC2920902  PMID: 20371422
air pollution; asthma; child; epidemiology; vehicular traffic

Results 1-25 (39)