Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Impact of Tumor Size on Probability of Pathologic Complete Response After Neoadjuvant Chemotherapy 
Annals of Surgical Oncology  2015;23:1522-1529.
The prospective Neoadjuvant Breast Symphony Trial (NBRST) study found that MammaPrint/BluePrint functional molecular subtype is superior to conventional immunohistochemistry/fluorescence in situ hybridization subtyping for predicting pathologic complete response (pCR) to neoadjuvant chemotherapy. The purpose of this substudy was to determine if the rate of pCR is affected by tumor size.
The NBRST study includes breast cancer patients who received neoadjuvant chemotherapy. MammaPrint/BluePrint subtyping classified patients into four molecular subgroups: Luminal A, Luminal B, HER2 (human epidermal growth factor receptor 2), and Basal type. Probability of pCR (ypT0/isN0) as a function of tumor size and molecular subgroup was evaluated.
A total of 608 patients were evaluable with overall pCR rates of 28.5 %. Luminal A and B patients had significantly lower rates of pCR (6.1 and 8.7 %, respectively) than either basal (37.1 %) or HER2 (55.0 %) patients (p < 0.001). The probability of pCR significantly decreased with tumor size >5 cm [p = 0.022, odds ratio (OR) 0.58, 95 % confidence interval (CI) 0.36, 0.93]. This relationship was statistically significant in the Basal (p = 0.026, OR 0.46, 95 % CI 0.23, 0.91) and HER2 (p = 0.039, OR 0.36, 95 % CI 0.14, 0.95) subgroups. In multivariate logistic regression analyses, the dichotomized tumor size variable was not significant in any of the molecular subgroups.
Even though tumor size would intuitively be a clinical determinant of pCR, the current analysis showed that the adjusted OR for tumor size was not statistically significant in any of the molecular subgroups. Factors significantly associated with pCR were PR status, grade, lymph node status, and BluePrint molecular subtyping, which had the strongest correlation.
PMCID: PMC4819747  PMID: 26714960
2.  Lapatinib Plasma and Tumor Concentrations and Effects on HER Receptor Phosphorylation in Tumor 
PLoS ONE  2015;10(11):e0142845.
The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER) in human tumors.
Experimental Design
Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID) with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD) or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor.
In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL) for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers.
Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally inhibit HER receptors.
Trial Registration
Clinical Trial Registration: NCT00359190
PMCID: PMC4646457  PMID: 26571496
3.  Toolbox to Reduce Lumpectomy Reoperations and Improve Cosmetic Outcome in Breast Cancer Patients: The American Society of Breast Surgeons Consensus Conference 
Annals of Surgical Oncology  2015;22:3174-3183.
Multiple recent reports have documented significant variability of reoperation rates after initial lumpectomy for breast cancer. To address this issue, a multidisciplinary consensus conference was convened during the American Society of Breast Surgeons 2015 annual meeting.
The conference mission statement was to “reduce the national reoperation rate in patients undergoing breast conserving surgery for cancer, without increasing mastectomy rates or adversely affecting cosmetic outcome, thereby improving value of care.” The goal was to develop a toolbox of recommendations to reduce the variability of reoperation rates and improve cosmetic outcomes. Conference participants included providers from multiple disciplines involved with breast cancer care, as well as a patient representative. Updated systematic reviews of the literature and invited presentations were sent to participants in advance. After topic presentations, voting occurred for choice of tools, level of evidence, and strength of recommendation.
The following tools were recommended with varied levels of evidence and strength of recommendation: compliance with the SSO-ASTRO Margin Guideline; needle biopsy for diagnosis before surgical excision of breast cancer; full-field digital diagnostic mammography with ultrasound as needed; use of oncoplastic techniques; image-guided lesion localization; specimen imaging for nonpalpable cancers; use of specialized techniques for intraoperative management, including excisional cavity shave biopsies and intraoperative pathology assessment; formal pre- and postoperative planning strategies; and patient-reported outcome measurement.
A practical approach to performance improvement was used by the American Society of Breast Surgeons to create a toolbox of options to reduce lumpectomy reoperations and improve cosmetic outcomes.
PMCID: PMC4550635  PMID: 26215198
4.  A Novel Automated Assay for the Rapid Identification of Metastatic Breast Carcinoma in Sentinel Lymph Nodes 
Cancer  2011;117(12):2599-2607.
The authors prospectively evaluated the performance of a proprietary molecular testing platform using one-step nucleic acid amplification (OSNA) for the detection of metastatic carcinoma in sentinel lymph nodes (SLNs) in a large multicenter trial and compared the OSNA results with the results from a detailed postoperative histopathologic evaluation (reference pathology) and from intraoperative imprint cytology (IC).
In total, 1044 SLN samples from 496 patients at 11 clinical sites were analyzed. Alternate 1-mm sections were subjected to either detailed histopathologic evaluation with hematoxylin and eosin and pancytokeratin immunostaining or the OSNA Breast Cancer System, which was calibrated to detect tumor deposits >0.2 mm by measuring cytokeratin 19 messenger RNA. At 7 sites, IC was performed before permanent section. The OSNA results were classified as negative (<250 copies/μL), micrometastases (from ≥250 to <5000 copies/μL), or macrometastases (≥5000 copies/μL).
The sensitivity and specificity of the OSNA breast cancer system compared with reference pathology were 77.5% (95% confidence interval, 69.7%-84.2%) and 95.8% (95% confidence interval, 94.3%-97.0%), respectively, before discordant case analyses (DCA). Sensitivity and specificity after DCA were 82.7% and 97.7%, and final concordance was 95.8%. Performance for invasive lobular carcinoma demonstrated 88.2% sensitivity (95% confidence interval, 63.6%-98.5%) and 98.5% specificity (95% confidence interval, 92%-100%). The sensitivity of OSNA was significantly better than that of IC (80% vs 63%; P =.0229).
The OSNA breast cancer system proved to be highly accurate for the detection of metastatic breast cancer in axillary SLNs. Sensitivity was comparable to that predicted for conventional postoperative histologic examination at 2-mm intervals and was significantly more sensitive than IC. Automation, semiquantitative results enabling the differentiation of macrometastasis and micrometastasis, and rapid results render the assay suitable for intraoperative and/or permanent evaluation of SLNs.
PMCID: PMC4419863  PMID: 21226034
breast; carcinoma; sentinel; lymph nodes; nucleic acid amplification; OSNA
5.  Chemosensitivity Predicted by BluePrint 80-Gene Functional Subtype and MammaPrint in the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST) 
Annals of Surgical Oncology  2014;21(10):3261-3267.
The purpose of the NBRST study is to compare a multigene classifier to conventional immunohistochemistry (IHC)/fluorescence in situ hybridization (FISH) subtyping to predict chemosensitivity as defined by pathological complete response (pCR) or endocrine sensitivity as defined by partial response.
The study includes women with histologically proven breast cancer, who will receive neoadjuvant chemotherapy (NCT) or neoadjuvant endocrine therapy. BluePrint in combination with MammaPrint classifies patients into four molecular subgroups: Luminal A, Luminal B, HER2, and Basal.
A total of 426 patients had definitive surgery. Thirty-seven of 211 (18 %) IHC/FISH hormone receptor (HR)+/HER2− patients were reclassified by Blueprint as Basal (n = 35) or HER2 (n = 2). Fifty-three of 123 (43 %) IHC/FISH HER2+ patients were reclassified as Luminal (n = 36) or Basal (n = 17). Four of 92 (4 %) IHC/FISH triple-negative (TN) patients were reclassified as Luminal (n = 2) or HER2 (n = 2). NCT pCR rates were 2 % in Luminal A and 7 % Luminal B patients versus 10 % pCR in IHC/FISH HR+/HER2− patients. The NCT pCR rate was 53 % in BluePrint HER2 patients. This is significantly superior (p = 0.047) to the pCR rate in IHC/FISH HER2+ patients (38 %). The pCR rate of 36 of 75 IHC/FISH HER2+/HR+ patients reclassified as BPLuminal is 3 %. NCT pCR for BluePrint Basal patients was 49 of 140 (35 %), comparable to the 34 of 92 pCR rate (37 %) in IHC/FISH TN patients.
BluePrint molecular subtyping reclassifies 22 % (94/426) of tumors, reassigning more responsive patients to the HER2 and Basal categories while reassigning less responsive patients to the Luminal category. These findings suggest that compared with IHC/FISH, BluePrint more accurately identifies patients likely to respond (or not respond) to NCT.
PMCID: PMC4161926  PMID: 25099655
6.  Update on DCIS Outcomes from the American Society of Breast Surgeons Accelerated Partial Breast Irradiation Registry Trial 
Annals of surgical oncology  2010;18(1):65-71.
Since the initial reports on use of MammoSite accelerated partial breast irradiation (APBI) for treatment of ductal carcinoma in situ (DCIS), additional follow-up data were collected. We hypothesized that APBI delivered via MammoSite would continue to be well tolerated, associated with a good cosmetic outcome, and carry a low risk for recurrence in patients with DCIS.
Materials and Methods
From 2002–2004, 194 patients with DCIS were enrolled in a registry trial to assess the MammoSite. Follow-up data were available for all 194 patients. Median follow-up was 54.4 months; 63 patients had at least 5 years of follow-up. Data obtained included patient-, tumor-, and treatment-related factors, and recurrence incidence.
Of the 194 patients, 87 (45%) had the MammoSite placed at lumpectomy; 107 patients (55%) had the device placed postlumpectomy. In the first year of followup, 16 patients developed a breast infection, though the method of device placement was not associated with infection risk. Also, 46 patients developed a seroma that was associated with applicator placement at the time of lumpectomy (P = 0.001). For patients with at least 5 years of follow-up, 92% had favorable cosmetic results. There were 6 patients (3.1%) who had an ipsilateral breast recurrence, with 1 (0.5%) experiencing recurrence in the breast and axilla, for a 5-year actuarial local recurrence rate of 3.39%.
During an extended follow-up period, APBI delivered via MammoSite continued to be well tolerated for patients with DCIS. Use of this device may make lumpectomy possible for patients who would otherwise choose mastectomy because of barriers associated with standard radiation therapy.
PMCID: PMC3019276  PMID: 20577822
7.  Electronic brachytherapy as adjuvant therapy for early stage breast cancer: a retrospective analysis 
OncoTargets and therapy  2011;4:13-20.
This multicenter, retrospective study evaluated treatment and clinical outcomes of patients with early stage breast cancer who received adjuvant high-dose rate (HDR) electronic brachytherapy (EBT) treatment post-lumpectomy using the Axxent® EBT system. Dosimetric data from the EBT treatment plans were compared with those based on iridium-192 HDR brachytherapy.
Material and methods:
Medical records of 63 patients with early stage breast cancer (Tis, T1a, T1b, T1c, and T2) who were treated post-lumpectomy with EBT alone or in combination with external beam radiation therapy were reviewed. The prescribed EBT dose was 34 Gy (10 fractions over 5 days, 3.4 Gy each) to 1 cm from the balloon surface. Dosimetry data from 12 patients were compared with these of treatment plans using an iridium-192 source prepared for the same 12 patients.
The majority of patients (90.5%) were older than 50 years and had one or more risk factors for breast cancer (80.6%). Tumor sizes were 0.1 cm to 3.5 cm (mean 1.3 cm). Median follow-up was 7 months (1 to 18 months) post-EBT. Balloon applicators were implanted 0 to 85 days (mean 13.4 days) post-lumpectomy/re-excision. The most common adverse events were erythema, rash dermatitis, and pain or breast tenderness. No recurrences were reported. Dosimetric analyses demonstrated comparable target coverage, increased high-dose regions, and a significantly reduced dose to the ipsilateral breast and lungs as well as the heart with EBT as compared with the iridium-192 treatment plans.
This retrospective, multicenter study showed that postsurgical adjuvant radiation therapy for early stage breast cancer can be administered using the EBT system with similar toxicity outcomes to those reported with iridium-192 brachytherapy. EBT offers a convenient, portable, nonisotope alternative to HDR brachytherapy using iridium-192.
PMCID: PMC3084303  PMID: 21552411
electronic brachytherapy; breast cancer; radiation therapy
8.  Post-surgical treatment of early-stage breast cancer with electronic brachytherapy: an intersociety, multicenter brachytherapy trial 
OncoTargets and therapy  2010;3:211-218.
Electronic brachytherapy (EBT) was developed to allow accelerated partial breast irradiation to be performed in a patient procedure room with minimal shielding. This observational, nonrandomized, multicenter study evaluated EBT as a post-surgical adjuvant radiation therapy for early stage breast cancer.
This study included women aged 50 years or more with invasive carcinoma or ductal carcinoma in situ, tumor size ≤3 cm, negative lymph node status, and negative surgical margins. The endpoints were skin and subcutaneous toxicities, efficacy outcomes, cosmetic outcomes, and device performance. In this interim report, 1-month, 6-month, and 1-year follow-up data are available on 68, 59, and 37 patients, respectively.
The EBT device performed consistently, delivering the prescribed 34 Gy to all 69 patients (10 fractions/patient). Most adverse events were Grade 1 and included firmness, erythema, breast tenderness, hyperpigmentation, pruritis, field contracture, seroma, rash/desquamation, palpable mass, breast edema, hypopigmentation, telangiectasia, and blistering, which were anticipated. Breast infection occurred in two (2.9%) patients. No tumor recurrences were reported. Cosmetic outcomes were excellent or good in 83.9%–100% of evaluable patients at 1 month, 6 months, and 1 year.
This observational, nonrandomized, multicenter study demonstrates that this EBT device was reliable and well tolerated as an adjuvant radiation therapy for early stage breast cancer.
PMCID: PMC2994203  PMID: 21124748
radiation therapy; electronic brachytherapy; breast cancer

Results 1-8 (8)