Search tips
Search criteria

Results 1-25 (57)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Transcriptome Meta-Analysis of Lung Cancer Reveals Recurrent Aberrations in NRG1 and Hippo Pathway Genes 
Nature communications  2014;5:5893.
Lung cancer is emerging as a paradigm for disease molecular subtyping, facilitating targeted therapy based on driving somatic alterations. Here, we perform transcriptome analysis of 153 samples representing lung adenocarcinomas, squamous cell carcinomas, large cell lung cancer, adenoid cystic carcinomas and cell lines. By integrating our data with The Cancer Genome Atlas and published sources, we analyze 753 lung cancer samples for gene fusions and other transcriptomic alterations. We show that higher numbers of gene fusions is an independent prognostic factor for poor survival in lung cancer. Our analysis confirms the recently reported CD74-NRG1 fusion and suggests that NRG1, NF1 and Hippo pathway fusions may play important roles in tumors without known driver mutations. In addition, we observe exon skipping events in c-MET, which are attributable to splice site mutations. These classes of genetic aberrations may play a significant role in the genesis of lung cancers lacking known driver mutations.
PMCID: PMC4274748  PMID: 25531467
2.  International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma 
Adenocarcinoma is the most common histologic type of lung cancer. To address advances in oncology, molecular biology, pathology, radiology, and surgery of lung adenocarcinoma, an international multidisciplinary classification was sponsored by the International Association for the Study of Lung Cancer, American Thoracic Society, and European Respiratory Society. This new adenocarcinoma classification is needed to provide uniform terminology and diagnostic criteria, especially for bronchioloalveolar carcinoma (BAC), the overall approach to small nonresection cancer specimens, and for multidisciplinary strategic management of tissue for molecular and immunohistochemical studies.
An international core panel of experts representing all three societies was formed with oncologists/pulmonologists, pathologists, radiologists, molecular biologists, and thoracic surgeons. A systematic review was performed under the guidance of the American Thoracic Society Documents Development and Implementation Committee. The search strategy identified 11,368 citations of which 312 articles met specified eligibility criteria and were retrieved for full text review. A series of meetings were held to discuss the development of the new classification, to develop the recommendations, and to write the current document. Recommendations for key questions were graded by strength and quality of the evidence according to the Grades of Recommendation, Assessment, Development, and Evaluation approach.
The classification addresses both resection specimens, and small biopsies and cytology. The terms BAC and mixed subtype adenocarcinoma are no longer used. For resection specimens, new concepts are introduced such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) for small solitary adenocarcinomas with either pure lepidic growth (AIS) or predominant lepidic growth with ≤5 mm invasion (MIA) to define patients who, if they undergo complete resection, will have 100% or near 100% disease-specific survival, respectively. AIS and MIA are usually nonmucinous but rarely may be mucinous. Invasive adenocarcinomas are classified by predominant pattern after using comprehensive histologic subtyping with lepidic (formerly most mixed subtype tumors with nonmucinous BAC), acinar, papillary, and solid patterns; micropapillary is added as a new histologic subtype. Variants include invasive mucinous adenocarcinoma (formerly mucinous BAC), colloid, fetal, and enteric adenocarcinoma. This classification provides guidance for small biopsies and cytology specimens, as approximately 70% of lung cancers are diagnosed in such samples. Non-small cell lung carcinomas (NSCLCs), in patients with advanced-stage disease, are to be classified into more specific types such as adenocarcinoma or squamous cell carcinoma, whenever possible for several reasons: (1) adenocarcinoma or NSCLC not otherwise specified should be tested for epidermal growth factor receptor (EGFR) mutations as the presence of these mutations is predictive of responsiveness to EGFR tyrosine kinase inhibitors, (2) adenocarcinoma histology is a strong predictor for improved outcome with pemetrexed therapy compared with squamous cell carcinoma, and (3) potential life-threatening hemorrhage may occur in patients with squamous cell carcinoma who receive bevacizumab. If the tumor cannot be classified based on light microscopy alone, special studies such as immunohistochemistry and/or mucin stains should be applied to classify the tumor further. Use of the term NSCLC not otherwise specified should be minimized.
This new classification strategy is based on a multidisciplinary approach to diagnosis of lung adenocarcinoma that incorporates clinical, molecular, radiologic, and surgical issues, but it is primarily based on histology. This classification is intended to support clinical practice, and research investigation and clinical trials. As EGFR mutation is a validated predictive marker for response and progression-free survival with EGFR tyrosine kinase inhibitors in advanced lung adenocarcinoma, we recommend that patients with advanced adenocarcinomas be tested for EGFR mutation. This has implications for strategic management of tissue, particularly for small biopsies and cytology samples, to maximize high-quality tissue available for molecular studies. Potential impact for tumor, node, and metastasis staging include adjustment of the size T factor according to only the invasive component (1) pathologically in invasive tumors with lepidic areas or (2) radiologically by measuring the solid component of part-solid nodules.
PMCID: PMC4513953  PMID: 21252716
Lung; Adenocarcinoma; Classification; Histologic; Pathology; Oncology; Pulmonary; Radiology; Computed tomography; Molecular; EGFR; KRAS; EML4-ALK; Gene profiling; Gene amplification; Surgery; Limited resection; Bronchioloalveolar carcinoma; Lepidic; Acinar; Papillary; Micropapillary; Solid; Adenocarcinoma in situ; Minimally invasive adenocarcinoma; Colloid; Mucinous cystadenocarcinoma; Enteric; Fetal; Signet ring; Clear cell; Frozen section; TTF-1; p63
3.  Comparison of Cancer-Associated Genetic Abnormalities in Columnar-Lined Esophagus tissues with and without Goblet Cells 
Annals of surgery  2014;260(1):72-80.
To determine and compare the frequency of cancer-associated genetic abnormalities in esophageal metaplasia biopsies with and without goblet cells.
Barrett’s esophagus (BE) is associated with increased risk of esophageal adenocarcinoma (EAC) but the appropriate histologic definition of BE is debated. Intestinal metaplasia (IM) is defined by the presence of goblet cells while non-goblet cell metaplasia (NGM) lacks goblet cells. Both have been implicated in EAC risk but this is controversial. While IM is known to harbor genetic changes associated with EAC, little is known about NGM. We hypothesized that if NGM and IM infer similar EAC risk then they would harbor similar genetic aberrations in genes associated with EAC.
Ninety frozen NGM, IM, and normal tissues from 45 subjects were studied. DNA copy number abnormalities (CNA’s) were identified using microarrays and fluorescence in situ hybridization (FISH). Targeted sequencing of all exons from twenty EAC-associated genes was performed on metaplasia biopsies using Ion AmpliSeq™ DNA sequencing.
Frequent CNA’s targeting cancer-associated genes were found in IM whereas no such changes were observed in NGM. In one subject, FISH confirmed loss of CDKN2A and amplification of chromosome 8 in IM but not in a nearby NGM biopsy. Targeted sequencing revealed 11 non-synonymous mutations in 16 IM samples and 2 mutations in 19 NGM samples.
This study reports the largest and most comprehensive comparison of DNA aberrations in IM and NGM genomes. Our results show that IM has a much higher frequency of cancer-associated mutations than NGM.
PMCID: PMC4047149  PMID: 24509200
4.  Epithelial–mesenchymal transition-associated secretory phenotype predicts survival in lung cancer patients 
Carcinogenesis  2014;35(6):1292-1300.
A gene signature derived from EASP strongly correlated with nodal metastasis, advanced tumor stage and poor differentiation and predicted survival in three independent lung cancer data sets, including early-stage patients. It may serve as a prognostic signature to identify high-risk early-stage patients.
In cancer cells, the process of epithelial–mesenchymal transition (EMT) confers migratory and invasive capacity, resistance to apoptosis, drug resistance, evasion of host immune surveillance and tumor stem cell traits. Cells undergoing EMT may represent tumor cells with metastatic potential. Characterizing the EMT secretome may identify biomarkers to monitor EMT in tumor progression and provide a prognostic signature to predict patient survival. Utilizing a transforming growth factor-β-induced cell culture model of EMT, we quantitatively profiled differentially secreted proteins, by GeLC-tandem mass spectrometry. Integrating with the corresponding transcriptome, we derived an EMT-associated secretory phenotype (EASP) comprising of proteins that were differentially upregulated both at protein and mRNA levels. Four independent primary tumor-derived gene expression data sets of lung cancers were used for survival analysis by the random survival forests (RSF) method. Analysis of 97-gene EASP expression in human lung adenocarcinoma tumors revealed strong positive correlations with lymph node metastasis, advanced tumor stage and histological grade. RSF analysis built on a training set (n = 442), including age, sex and stage as variables, stratified three independent lung cancer data sets into low-, medium- and high-risk groups with significant differences in overall survival. We further refined EASP to a 20 gene signature (rEASP) based on variable importance scores from RSF analysis. Similar to EASP, rEASP predicted survival of both adenocarcinoma and squamous carcinoma patients. More importantly, it predicted survival in the early-stage cancers. These results demonstrate that integrative analysis of the critical biological process of EMT provides mechanism-based and clinically relevant biomarkers with significant prognostic value.
PMCID: PMC4043235  PMID: 24510113
5.  Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors12 
Neoplasia (New York, N.Y.)  2015;17(4):385-399.
Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes. To address these challenges, we predefined the catalog of relevant solid tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics analysis of >700,000 samples. To detect these variants, we developed the Oncomine Comprehensive Panel (OCP), an integrative NGS-based assay [compatible with < 20 ng of DNA/RNA from formalin-fixed paraffin-embedded (FFPE) tissues], coupled with an informatics pipeline to specifically identify relevant predefined variants and created a knowledge base of related potential treatments, current practice guidelines, and open clinical trials. We validated OCP using molecular standards and more than 300 FFPE tumor samples, achieving >95% accuracy for KRAS, epidermal growth factor receptor, and BRAF mutation detection as well as for ALK and TMPRSS2:ERG gene fusions. Associating positive variants with potential targeted treatments demonstrated that 6% to 42% of profiled samples (depending on cancer type) harbored alterations beyond routine molecular testing that were associated with approved or guideline-referenced therapies. As a translational research tool, OCP identified adaptive CTNNB1 amplifications/mutations in treated prostate cancers. Through predefining somatic variants in solid tumors and compiling associated potential treatment strategies, OCP represents a simplified, broadly applicable targeted NGS system with the potential to advance precision oncology efforts.
PMCID: PMC4415141  PMID: 25925381
AOHC, AcroMetrix Oncology Hotspot Control; CNAs, copy number alterations; FFPE, formalin-fixed paraffin-embedded; GoF, gain-of-function; indels, insertions/deletions; LoF, loss-of-function; LU, lung cohort; MCR, minimal common region; MO, molecular cohort; NCCN, National Comprehensive Cancer Network; NGS, next-generation sequencing; OCP, Oncomine Comprehensive Panel; PGM, Personal Genome Machine; PR, prostate cohort; QMRS, Quantitative Multiplex Reference Standard; SCC, small cell carcinoma; TCGA, The Cancer Genome Atlas
6.  Epigenetic Regulation of Vitamin D Metabolism in Human Lung Adenocarcinoma 
1α,25-Dihydroxyvitamin D3 (1,25-D3) is antiproliferative in pre-clinical models of lung cancer, but in tumor tissues its efficacy may be limited by CYP24A1 expression. CYP24A1 is the rate limiting catabolic enzyme for 1,25-D3 and is overexpressed in human lung adenocarcinoma (AC) by unknown mechanisms.
The DNA methylation status of CYP24A1 was determined by bisulfite DNA pyrosequencing in a panel of 30 lung cell lines and 90 surgically resected lung AC. The level of CYP24A1 methylation was correlated with CYP24A1 expression in lung AC cell lines and tumors. In addition, histone modifications were assessed by quantitative chromatin immunoprecipitation-PCR (ChIP-qPCR) in A549, NCI-H460 and SK-LU-1.
Bisulfite DNA pyrosequencing analysis revealed that CYP24A1 gene was heterogeneously methylated in lung AC. Expression of CYP24A1 was inversely correlated with promoter DNA methylation in lung AC cell lines and tumors. Treatment with 5-aza-2′-deoxycytidine (5-Aza) as well as trichostatin A (TSA) increased CYP24A1 expression in lung AC. We observed that CYP24A1 promoter hypermethylation decreased CYP24A1 enzyme activity in vitro, whereas treatment with 5-Aza and/or TSA increased CYP24A1 enzyme affinity for its substrate 1,25-D3. In addition, ChIP-qPCR analysis revealed specific histone modifications within the CYP24A1 promoter region. Treatment with TSA increased H3K4me2 and H3K9ac and simultaneously decreased H3K9me2 at the CYP24A1 promoter.
The expression of CYP24A1 gene in human lung AC is in part epigenetically regulated by promoter DNA methylation and repressive histone modifications. These findings should be taken into consideration when targeting CYP24A1 to optimize antiproliferative effects of 1,25-D3 in lung AC.
PMCID: PMC3994461  PMID: 24736069
vitamin D metabolism; CYP24A1; 1α,25-Dihydroxyvitamin-D3; DNA methylation; histone modification; lung adenocarcinoma
7.  Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model 
Oncotarget  2014;5(23):12383-12397.
The potential utility of circulating tumor cells (CTCs) to guide clinical care in oncology patients has gained momentum with emerging micro- and nanotechnologies. Establishing the role of CTCs in tumor progression and metastasis depends both on enumeration and on obtaining sufficient numbers of CTCs for downstream assays. The numbers of CTCs are few in early stages of cancer, limiting detailed molecular characterization. Recent attempts in the literature to culture CTCs isolated from metastatic patients using monoculture have had limited success rates of less than 20%. Herein, we have developed a novel in-situ capture and culture methodology for ex-vivo expansion of CTCs using a three dimensional co-culture model, simulating a tumor microenvironment to support tumor development. We have successfully expanded CTCs isolated from 14 of 19 early stage lung cancer patients. Expanded lung CTCs carried mutations of the TP53 gene identical to those observed in the matched primary tumors. Next-generation sequencing further revealed additional matched mutations between primary tumor and CTCs of cancer-related genes. This strategy sets the stage to further characterize the biology of CTCs derived from patients with early lung cancers, thereby leading to a better understanding of these putative drivers of metastasis.
PMCID: PMC4323004  PMID: 25474037
expansion of CTCs; early stage lung cancer; microfluidic co-culture
9.  TGM2 A Cell Surface Marker in Esophageal Adenocarcinomas 
Esophageal adenocarcinomas (EAC) are aggressive cancers that are increasing in incidence and associated with a poor prognosis. The identification of highly expressed genes in EAC relative to metaplastic Barrett’s esophagus (BE) may provide new targets for novel early cancer detection strategies using endoscopically administered, fluorescently labeled peptides.
Gene expression analysis of BE and EACs were used to identify the cell surface marker transglutaminase 2 (TGM2) as overexpressed in cancer. The expression of two major isoforms of TGM2 was determined by qRT-polymerase chain reaction in an independent cohort of 128 EACs. Protein expression was confirmed by tissue microarrays and immunoblot analysis of EAC cell lines. TGM2 DNA copy number was assessed using single nucleotide polymorphism microarrays and confirmed by qPCR. TGM2 expression in neoadjuvantly treated EACs and following small interfering RNA-mediated knockdown in cisplatin-treated EAC cells was used to determine its possible role in chemoresistance.
TGM2 is overexpressed in 15 EACs relative to 26 BE samples. Overexpression of both TGM2 isoforms was confirmed in 128 EACs and associated with higher tumor stage, poor differentiation, and increased inflammatory and desmoplastic response. Tissue microarrays and immunohistochemistry confirmed elevated TGM2 protein expression in EAC. Single nucleotide polymorphism and qPCR analysis revealed increased TGM2 gene copy number as one mechanism underlying elevated TGM2 expression. TGM2 was highly expressed in resistant EAC after patient treatment with neoadjuvant chemotherapy/radiation suggesting a role for TGM2 in chemoresistance.
TGM2 may be a useful cell surface biomarker for early detection of EAC.
PMCID: PMC4170218  PMID: 24828664
Esophageal adenocarcinoma; TGM2; Cell surface biomarker
10.  Comprehensive molecular characterization of gastric adenocarcinoma 
Bass, Adam J. | Thorsson, Vesteinn | Shmulevich, Ilya | Reynolds, Sheila M. | Miller, Michael | Bernard, Brady | Hinoue, Toshinori | Laird, Peter W. | Curtis, Christina | Shen, Hui | Weisenberger, Daniel J. | Schultz, Nikolaus | Shen, Ronglai | Weinhold, Nils | Kelsen, David P. | Bowlby, Reanne | Chu, Andy | Kasaian, Katayoon | Mungall, Andrew J. | Robertson, A. Gordon | Sipahimalani, Payal | Cherniack, Andrew | Getz, Gad | Liu, Yingchun | Noble, Michael S. | Pedamallu, Chandra | Sougnez, Carrie | Taylor-Weiner, Amaro | Akbani, Rehan | Lee, Ju-Seog | Liu, Wenbin | Mills, Gordon B. | Yang, Da | Zhang, Wei | Pantazi, Angeliki | Parfenov, Michael | Gulley, Margaret | Piazuelo, M. Blanca | Schneider, Barbara G. | Kim, Jihun | Boussioutas, Alex | Sheth, Margi | Demchok, John A. | Rabkin, Charles S. | Willis, Joseph E. | Ng, Sam | Garman, Katherine | Beer, David G. | Pennathur, Arjun | Raphael, Benjamin J. | Wu, Hsin-Ta | Odze, Robert | Kim, Hark K. | Bowen, Jay | Leraas, Kristen M. | Lichtenberg, Tara M. | Weaver, Stephanie | McLellan, Michael | Wiznerowicz, Maciej | Sakai, Ryo | Getz, Gad | Sougnez, Carrie | Lawrence, Michael S. | Cibulskis, Kristian | Lichtenstein, Lee | Fisher, Sheila | Gabriel, Stacey B. | Lander, Eric S. | Ding, Li | Niu, Beifang | Ally, Adrian | Balasundaram, Miruna | Birol, Inanc | Bowlby, Reanne | Brooks, Denise | Butterfield, Yaron S. N. | Carlsen, Rebecca | Chu, Andy | Chu, Justin | Chuah, Eric | Chun, Hye-Jung E. | Clarke, Amanda | Dhalla, Noreen | Guin, Ranabir | Holt, Robert A. | Jones, Steven J.M. | Kasaian, Katayoon | Lee, Darlene | Li, Haiyan A. | Lim, Emilia | Ma, Yussanne | Marra, Marco A. | Mayo, Michael | Moore, Richard A. | Mungall, Andrew J. | Mungall, Karen L. | Nip, Ka Ming | Robertson, A. Gordon | Schein, Jacqueline E. | Sipahimalani, Payal | Tam, Angela | Thiessen, Nina | Beroukhim, Rameen | Carter, Scott L. | Cherniack, Andrew D. | Cho, Juok | Cibulskis, Kristian | DiCara, Daniel | Frazer, Scott | Fisher, Sheila | Gabriel, Stacey B. | Gehlenborg, Nils | Heiman, David I. | Jung, Joonil | Kim, Jaegil | Lander, Eric S. | Lawrence, Michael S. | Lichtenstein, Lee | Lin, Pei | Meyerson, Matthew | Ojesina, Akinyemi I. | Pedamallu, Chandra Sekhar | Saksena, Gordon | Schumacher, Steven E. | Sougnez, Carrie | Stojanov, Petar | Tabak, Barbara | Taylor-Weiner, Amaro | Voet, Doug | Rosenberg, Mara | Zack, Travis I. | Zhang, Hailei | Zou, Lihua | Protopopov, Alexei | Santoso, Netty | Parfenov, Michael | Lee, Semin | Zhang, Jianhua | Mahadeshwar, Harshad S. | Tang, Jiabin | Ren, Xiaojia | Seth, Sahil | Yang, Lixing | Xu, Andrew W. | Song, Xingzhi | Pantazi, Angeliki | Xi, Ruibin | Bristow, Christopher A. | Hadjipanayis, Angela | Seidman, Jonathan | Chin, Lynda | Park, Peter J. | Kucherlapati, Raju | Akbani, Rehan | Ling, Shiyun | Liu, Wenbin | Rao, Arvind | Weinstein, John N. | Kim, Sang-Bae | Lee, Ju-Seog | Lu, Yiling | Mills, Gordon | Laird, Peter W. | Hinoue, Toshinori | Weisenberger, Daniel J. | Bootwalla, Moiz S. | Lai, Phillip H. | Shen, Hui | Triche, Timothy | Van Den Berg, David J. | Baylin, Stephen B. | Herman, James G. | Getz, Gad | Chin, Lynda | Liu, Yingchun | Murray, Bradley A. | Noble, Michael S. | Askoy, B. Arman | Ciriello, Giovanni | Dresdner, Gideon | Gao, Jianjiong | Gross, Benjamin | Jacobsen, Anders | Lee, William | Ramirez, Ricardo | Sander, Chris | Schultz, Nikolaus | Senbabaoglu, Yasin | Sinha, Rileen | Sumer, S. Onur | Sun, Yichao | Weinhold, Nils | Thorsson, Vésteinn | Bernard, Brady | Iype, Lisa | Kramer, Roger W. | Kreisberg, Richard | Miller, Michael | Reynolds, Sheila M. | Rovira, Hector | Tasman, Natalie | Shmulevich, Ilya | Ng, Santa Cruz Sam | Haussler, David | Stuart, Josh M. | Akbani, Rehan | Ling, Shiyun | Liu, Wenbin | Rao, Arvind | Weinstein, John N. | Verhaak, Roeland G.W. | Mills, Gordon B. | Leiserson, Mark D. M. | Raphael, Benjamin J. | Wu, Hsin-Ta | Taylor, Barry S. | Black, Aaron D. | Bowen, Jay | Carney, Julie Ann | Gastier-Foster, Julie M. | Helsel, Carmen | Leraas, Kristen M. | Lichtenberg, Tara M. | McAllister, Cynthia | Ramirez, Nilsa C. | Tabler, Teresa R. | Wise, Lisa | Zmuda, Erik | Penny, Robert | Crain, Daniel | Gardner, Johanna | Lau, Kevin | Curely, Erin | Mallery, David | Morris, Scott | Paulauskis, Joseph | Shelton, Troy | Shelton, Candace | Sherman, Mark | Benz, Christopher | Lee, Jae-Hyuk | Fedosenko, Konstantin | Manikhas, Georgy | Potapova, Olga | Voronina, Olga | Belyaev, Smitry | Dolzhansky, Oleg | Rathmell, W. Kimryn | Brzezinski, Jakub | Ibbs, Matthew | Korski, Konstanty | Kycler, Witold | ŁaŸniak, Radoslaw | Leporowska, Ewa | Mackiewicz, Andrzej | Murawa, Dawid | Murawa, Pawel | Spychała, Arkadiusz | Suchorska, Wiktoria M. | Tatka, Honorata | Teresiak, Marek | Wiznerowicz, Maciej | Abdel-Misih, Raafat | Bennett, Joseph | Brown, Jennifer | Iacocca, Mary | Rabeno, Brenda | Kwon, Sun-Young | Penny, Robert | Gardner, Johanna | Kemkes, Ariane | Mallery, David | Morris, Scott | Shelton, Troy | Shelton, Candace | Curley, Erin | Alexopoulou, Iakovina | Engel, Jay | Bartlett, John | Albert, Monique | Park, Do-Youn | Dhir, Rajiv | Luketich, James | Landreneau, Rodney | Janjigian, Yelena Y. | Kelsen, David P. | Cho, Eunjung | Ladanyi, Marc | Tang, Laura | McCall, Shannon J. | Park, Young S. | Cheong, Jae-Ho | Ajani, Jaffer | Camargo, M. Constanza | Alonso, Shelley | Ayala, Brenda | Jensen, Mark A. | Pihl, Todd | Raman, Rohini | Walton, Jessica | Wan, Yunhu | Demchok, John A. | Eley, Greg | Mills Shaw, Kenna R. | Sheth, Margi | Tarnuzzer, Roy | Wang, Zhining | Yang, Liming | Zenklusen, Jean Claude | Davidsen, Tanja | Hutter, Carolyn M. | Sofia, Heidi J. | Burton, Robert | Chudamani, Sudha | Liu, Jia
Nature  2014;513(7517):202-209.
Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies.
PMCID: PMC4170219  PMID: 25079317
11.  Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early stage lung adenocarcinoma 
The microRNA-34b/c (miR-34b/c) has been considered a tumor suppressor in different tumor types and it is a known transcriptional target of the tumor suppressor gene TP53. The main objectives of this study were to investigate the clinical implications of miR-34b/c methylation in early stage lung adenocarcinoma (AC) patients and to determine the functional role of miR-34b/c re-expression in lung AC cell lines.
Experimental Design
Aberrant methylation and expression of miR-34b/c were assessed in 15 lung AC cell lines and a cohort of 140 early stage lung AC. Lung AC cell lines were transfected with miR-34b/c and the effects upon cell proliferation, migration, invasion and apoptosis were investigated.
Aberrant methylation of miR-34b/c was detected in 6 (40%) of 15 lung AC cell lines and 64 out of 140 (46%) primary lung adenocarcinomas. Expression of miR-34b/c was significantly reduced in all methylated cell lines and primary tumors, especially in those harboring a TP53 mutation. Patients with high levels of miR-34b/c methylation had significantly shorter disease-free survival and overall survival as compared to patients with unmethylated miR-34b/c or low level of miR-34b/c methylation. Ectopic expression of miR-34b/c in lung AC cell lines decreased cell proliferation, migration and invasion.
Epigenetic inactivation of miR-34b/c by DNA methylation has independent prognostic value in early stage lung AC patients with surgically resected tumors. Re-expression of miR-34b/c leads to a less aggressive phenotype in lung AC cell lines.
PMCID: PMC4161219  PMID: 24130071
microRNA; DNA methylation; microRNA-34b/c; lung adenocarcinoma; TP53
12.  Development and Validation of a qRT-PCR Classifier for Lung Cancer Prognosis 
This prospective study aimed to develop a robust and clinically-applicable method to identify high-risk early stage lung cancer patients and then to validate this method for use in future translational studies.
Patients and Methods
Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model and random survival forest (RSF) analysis. A final set of 91 genes was selected and tested as a predictor of survival using a qRT-PCR-based assay utilizing an independent cohort of 101 lung adenocarcinomas.
The RSF model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index (MRI) was significantly related to survival (Cox model p < 0.00001) and separated all patients into low, medium, and high-risk groups (HR = 1.00, 2.82, 4.42). The MRI was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low, medium, and high-risk groups (HR = 1.00, 3.29, 3.77).
The development and validation of this robust qRT-PCR platform allows prediction of patient survival with early stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of lung cancer patients and improving patient survival.
PMCID: PMC3167380  PMID: 21792073
Lung cancer; qRT-PCR; Prognosis
13.  Reconstructing targetable pathways in lung cancer by integrating diverse omics data 
Nature communications  2013;4:2617.
Global ‘multi-omics’ profiling of cancer cells harbours the potential for characterizing the signaling networks associated with specific oncogenes. Here we profile the transcriptome, proteome and phosphoproteome in a panel of non-small cell lung cancer (NSCLC) cell lines in order to reconstruct targetable networks associated with KRAS dependency. We develop a two-step bioinformatics strategy addressing the challenge of integrating these disparate data sets. We first define an ‘abundance-score’ combining transcript, protein and phospho-protein abundances to nominate differentially abundant proteins and then use the Prize Collecting Steiner Tree algorithm to identify functional sub-networks. We identify three modules centered on KRAS and MET, LCK and PAK1 and b-Catenin. We validate activation of these proteins in KRAS-dependent (KRAS-Dep) cells and perform functional studies defining LCK as a critical gene for cell proliferation in KRAS-Dep but not KRAS-independent NSCLCs. These results suggest that LCK is a potential druggable target protein in KRAS-Dep lung cancers.
PMCID: PMC4107456  PMID: 24135919
14.  Telomerase Variant A279T Induces Telomere Dysfunction and Inhibits Non-Canonical Telomerase Activity in Esophageal Carcinomas 
PLoS ONE  2014;9(7):e101010.
Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas.
Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC) patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability.
Sequencing analysis revealed one deletion involving TERC (TERC del 341-360), and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous); A1062T (4 heterozygous)]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01). Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs) following Zeocin™ exposure, as well as Li Fraumeni fibroblasts in the absence of pharmacologically-induced DNA damage.
A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal cancer cells. These findings warrant further analysis of A279T expression in esophageal cancers and premalignant esophageal lesions.
PMCID: PMC4077737  PMID: 24983628
15.  Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in non–small cell lung cancer 
When presenting with advanced stage disease, lung cancer patients have <5% 5-y survival. The overexpression of checkpoint kinase 1 (CHK1) is associated with poorer outcomes and may contribute to therapy resistance. Targeting CHK1 with small-molecule inhibitors in p53 mutant tumors might improve the effectiveness of chemotherapy and radiotherapy in non–small cell lung cancer (NSCLC).
We evaluatedCHK1 messenger RNA and protein levels in multiple NSCLC cell lines. We assessed cell line sensitization to gemcitabine, pemetrexed, and radiotherapy by CHK1 inhibition with the small molecule AZD7762 using proliferation and clonogenic cell survival assays. We analyzed CHK1 signaling by Western blotting to confirm that AZD7762 inhibits CHK1.
We selected two p53 mutant NSCLC cell lines with either high (H1299) or low (H1993) CHK1 levels for further analysis. We found that AZD7762 sensitized both cell lines to gemcitabine, pemetrexed, and radiotherapy. Chemosensitization levels were greater, however, for the higher CHK1 protein expressing cell line, H1299, when compared with H1993. Furthermore, analysis of the CHK1 signaling pathway showed that H1299 cells have an increased dependence on the CHK1 pathway in response to chemotherapy. There was no increased sensitization to radiation in H1299 versus H1993.
CHK1 inhibition by AZD7762 preferentially sensitizes high CHK1 expressing cells, H1299, to anti-metabolite chemotherapy as compared with low CHK1 expressing H1993 cells. Thus, CHK1 inhibitors may improve the efficacy of standard lung cancer therapies, especially for those subgroups of tumors harboring higher expression levels of CHK1 protein.
PMCID: PMC4073630  PMID: 24418519
CHK1; NSCLC cell lines; Combination therapies; AZD7762; Chemosensitivity; Radiosensitivity
16.  CHK1 levels correlate with sensitization to pemetrexed by CHK1 inhibitors in non-small cell lung cancer cells 
Overexpression of checkpoint kinase 1 (CHK1) is associated with poorer patient outcome and therapeutic resistance in multiple tumor models. Inhibition of CHK1 has been proposed as a strategy to increase the effectiveness of chemotherapeutic agents, especially in p53-deficient tumors. In this study, we evaluated the effects of a novel CHK1 inhibitor, MK-8776, in combination with pemetrexed (PMX) on cell proliferation and survival in a panel of p53 mutant non-small cell lung cancer (NSCLC) cell lines.
We examined CHK1 expression in 442 resected lung adenocarcinoma specimens using Affymetrix U133A gene expression arrays. We correlated CHK1 mRNA expression with patient survival, tumor differentiation and genomic complexity. We evaluated CHK1 levels in NSCLC cell lines and identified four p53 mutant cell lines with variable CHK1 expression (H1993, H23, H1437 and H1299) based on publicly available gene expression data. We confirmed differential CHK1 mRNA and CHK1 protein levels by qRT-PCR, ELISA, Western Blot analysis (WB) and immunohistochemistry. We examined cell line sensitization to PMX in response to CHK1 inhibition with MK-8776 using WST-1 and clonogenic survival assays.
We found that elevated CHK1 expression in primary lung adenocarcinomas correlates with poor tumor differentiation and significantly worse patient survival. Tumors with elevated CHK1 mRNA levels have a higher number of gene mutations and DNA copy number gain or amplifications. CHK1 inhibition by MK-8776 enhances sensitivity of NSCLC cell lines to PMX. CHK1 mRNA and protein expression are variable among NSCLC cell lines, and cells expressing higher levels of CHK1 protein are more sensitive to the CHK1 inhibition by MK-8776 as compared to low CHK1 expressing cells.
These findings suggest that CHK1 levels may not only serve as a biomarker of poor prognosis in surgically-resected lung adenocarcinomas, but could also be a predictive marker for CHK1 inhibitor sensitivity, pending in vivo and clinical confirmation.
PMCID: PMC4073640  PMID: 24113549
CHK1; Lung; Chemosensitivity; NSCLC; Patient survival; Genomic complexity
17.  Signatures of Drug Sensitivity in Nonsmall Cell Lung Cancer 
We profiled receptor tyrosine kinase pathway activation and key gene mutations in eight human lung tumor cell lines and 50 human lung tumor tissue samples to define molecular pathways. A panel of eight kinase inhibitors was used to determine whether blocking pathway activation affected the tumor cell growth. The HER1 pathway in HER1 mutant cell lines HCC827 and H1975 were found to be highly activated and sensitive to HER1 inhibition. H1993 is a c-MET amplified cell line showing c-MET and HER1 pathway activation and responsiveness to c-MET inhibitor treatment. IGF-1R pathway activated H358 and A549 cells are sensitive to IGF-1R inhibition. The downstream PI3K inhibitor, BEZ-235, effectively inhibited tumor cell growth in most of the cell lines tested, except the H1993 and H1650 cells, while the MEK inhibitor PD-325901 was effective in blocking the growth of KRAS mutated cell line H1734 but not H358, A549 and H460. Hierarchical clustering of primary tumor samples with the corresponding tumor cell lines based on their pathway signatures revealed similar profiles for HER1, c-MET and IGF-1R pathway activation and predict potential treatment options for the primary tumors based on the tumor cell lines response to the panel of kinase inhibitors.
PMCID: PMC3200133  PMID: 22091388
18.  Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma 
The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells.
Experimental Design
We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity.
Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival.
Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma.
PMCID: PMC3630232  PMID: 23444212
Cancer Stem cells; Notch pathway; Lung cancer
19.  KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation12 
Neoplasia (New York, N.Y.)  2014;16(2):115-128.
Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1). Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutant of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells.
PMCID: PMC3978392  PMID: 24709419
20.  Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis  
Cullin-RING ligases (CRLs) are a family of E3 ubiquitin ligase complexes that rely on either RING-box 1 (RBX1) or sensitive to apoptosis gene (SAG), also known as RBX2, for activity. RBX1 and SAG are both overexpressed in human lung cancer; however, their contribution to patient survival and lung tumorigenesis is unknown. Here, we report that overexpression of SAG, but not RBX1, correlates with poor patient prognosis and more advanced disease. We found that SAG is overexpressed in murine KrasG12D-driven lung tumors and that Sag deletion suppressed lung tumorigenesis and extended murine life span. Using cultured lung cancer cells, we showed that SAG knockdown suppressed growth and survival, inactivated both NF-κB and mTOR pathways, and resulted in accumulation of tumor suppressor substrates, including p21, p27, NOXA, and BIM. Importantly, growth suppression by SAG knockdown was partially rescued by simultaneous knockdown of p21 or the mTOR inhibitor DEPTOR. Treatment with MLN4924, a small molecule inhibitor of CRL E3s, also inhibited the formation of KrasG12D-induced lung tumors through a similar mechanism involving inactivation of NF-κB and mTOR and accumulation of tumor suppressor substrates. Together, our results demonstrate that Sag is a Kras-cooperating oncogene that promotes lung tumorigenesis and suggest that targeting SAG-CRL E3 ligases may be an effective therapeutic approach for Kras-driven lung cancers.
PMCID: PMC3904615  PMID: 24430184
21.  Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: First in-human results 
Science translational medicine  2013;5(184):10.1126/scitranslmed.3004733.
Esophageal adenocarcinoma is rising rapidly in incidence, and usually develops from Barrett’s esophagus, a precursor condition commonly found in patients with chronic acid reflux. Pre-malignant lesions are challenging to detect on conventional screening endoscopy because of their flat appearance. Molecular changes can be used to improve detection of early neoplasia. We have developed a peptide that binds specifically to high-grade dysplasia and adenocarcinoma. We first applied the peptide ex vivo to esophageal specimens from 17 patients to validate specific binding. Next, we performed confocal endomicroscopy in vivo in 25 human subjects after topical peptide administration and found 3.8-fold greater fluorescence intensity for esophageal neoplasia compared with Barrett’s esophagus and squamous epithelium with 75% sensitivity and 97% specificity. No toxicity was attributed to the peptide in either animal or patient studies. Therefore, our first-in-humans results show that this targeted imaging agent is safe, and may be useful for guiding tissue biopsy and for early detection of esophageal neoplasia and potentially other cancers of epithelial origin, such as bladder, colon, lung, pancreas, and stomach.
PMCID: PMC3859345  PMID: 23658246
22.  Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity 
Nature genetics  2013;45(5):10.1038/ng.2591.
The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a five-year survival rate of 15%, identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a mutational signature defined by a high prevalence of A to C transversions at AA dinucleotides. Statistical analysis of exome data identified significantly mutated 26 genes. Of these genes, four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include chromatin modifying factors and candidate contributors: SPG20, TLR4, ELMO1, and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 reveal increased cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis.
PMCID: PMC3678719  PMID: 23525077
23.  Gastrointestinal adenocarcinomas of the esophagus, stomach and colon exhibit distinct patterns of genome instability and oncogenesis 
Cancer research  2012;72(17):4383-4393.
A more detailed understanding of the somatic genetic events that drive gastrointestinal adenocarcinomas is necessary to improve diagnosis and therapy. Using data from high-density genomic profiling arrays, we conducted an analysis of somatic copy-number aberrations (SCNAs) in 486 gastrointestinal adenocarcinomas including 296 esophageal and gastric cancers. Focal amplifications were substantially more prevalent in gastric/esophageal adenocarcinomas than colorectal tumors. We identified 64 regions of significant recurrent amplification and deletion, some shared and others unique to the adenocarcinoma types examined. Amplified genes were noted in 37% of gastric/esophageal tumors, including in therapeutically targetable kinases such as ERBB2, FGFR1, FGFR2, EGFR, and MET, suggesting the potential utility of genomic amplifications as biomarkers to guide therapy of gastric and esophageal cancers where targeted therapeutics have been less developed compared to colorectal cancers. Amplified loci implicated genes with known involvement in carcinogenesis but also pointed to regions harboring potentially novel cancer genes, including a recurrent deletion found in 15% of esophageal tumors where the Runt transcription factor subunit RUNX1 was implicated, including by functional experiments in tissue culture. Together, our results defined genomic features that were common and distinct to various gut-derived adenocarcinomas, potentially informing novel opportunities for targeted therapeutic interventions.
PMCID: PMC3432726  PMID: 22751462
Esophagus; stomach; colon; adenocarcinoma; copy-number
24.  Characterization of vitamin D receptor (VDR) in lung adenocarcinoma 
The anti-proliferative effects of 1α,25-dihydroxyvitamin D3 (1,25-D3, calcitriol, the active form of vitamin D) are mediated by the nuclear vitamin D receptor (VDR). In the present study, we characterized VDR expression in lung adenocarcinoma (AC).
Experimental Design
We examined VDR mRNA expression using a quantitative real-time PCR (qRT-PCR) in 100 patients who underwent surgery for lung AC. In a subset of these patients (n = 89), we examined VDR protein expression using immunohistochemistry. We also examined the association of VDR protein expression with circulating serum levels of 25-hydroxyvitamin D3 (25-D3) and 1,25-D3. The antiproliferative effects and cell cycle arrest of 1,25-D3 were examined using lung cancer cell lines with high (SKLU-1) as well as low (A549) expression of VDR mRNA.
Higher VDR expression correlates with longer survival after adjusting for age, sex, disease stage and tumor grade (HR 0.73, 95% CI 0.58–0.91). In addition, there was a positive correlation (r = 0.38) between serum 1,25-D3 and tumor VDR protein expression. A greater anti-proliferative effect of 1,25-D3 was observed in high compared to low VDR-expressing cell lines; these effects corresponded to G1 cell cycle arrest; this was associated with a decline in cyclin D1, S-phase kinase protein 2 (Skp2), retinoblastoma (Rb) and minichromosome maintenance 2 (MCM2) proteins involved in S-phase entry.
Increased VDR expression in lung AC is associated with improved survival. This may relate to a lower proliferative status and G1 arrest in high VDR-expressing tumors.
PMCID: PMC3396768  PMID: 22564539
VDR; Vitamin D; 1,25-D3; Lung Adenocarcinoma; Survival
25.  Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma 
Tumor recurrence is the major cause of death in lung cancer treatment. To date, there is no clinically applied gene expression-based model to predict the risk for tumor recurrence in non-small cell lung cancer (NSCLC). We sought to embed crosstalk with major signaling pathways into biomarker identification. Three approaches were used to identify prognostic gene signatures from 442 lung adenocarcinoma samples. Candidate genes co-expressed with 6 or 7 major NSCLC signaling hallmarks were identified from genome-wide coexpression networks specifically associated with different prognostic groups. From these candidate genes, the first approach selected genes significantly associated with disease-specific survival using univariate Cox model. The second approach used random forests to refine the gene signatures; and the third approach used Relief algorithm to form the final gene sets. A total of 21 gene signatures were identified using these three approaches. These gene signatures generated significant prognostic stratifications (log-rank P < 0.05 in Kaplan-Meier analyses; Hazard Ratio >1, P< 0.05) in all tumors, stage I only, and in stage I patients not receiving chemotherapy in all training and test sets. In multivariate analyses with age, gender, race, smoking history, cancer stage, and tumor differentiation, a 10-gene signature had a hazard ratio of 3.23 (95% CI: [1.48, 7.06]), which was a more significant prognostic factor than other clinical factors, except cancer stage (III vs. I; with no significant difference). All identified 21 gene signatures outperformed other lung cancer signatures evaluated in the Director's Challenge Study. This study is an important step toward personalized prognosis of tumor recurrence and patient selection for adjuvant chemotherapy, with significant impact on down-stream clinical applications.
PMCID: PMC3274612  PMID: 22047960
lung adenocarcinoma; gene co-expression networks; biomarker identification; signaling pathways; prognostic stratification; tumor recurrence; metastasis; non-small cell lung cancer

Results 1-25 (57)