Search tips
Search criteria

Results 1-25 (61)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  The Epigenomics of Cancer 
Cell  2007;128(4):683-692.
Aberrant gene function and altered patterns of gene expression are key features of cancer. Growing evidence shows that acquired epigenetic abnormalities participate with genetic alterations to cause this dysregulation. Here, we review recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, and discuss the growing implications of these advances for strategies to control cancer.
PMCID: PMC3894624  PMID: 17320506
2.  The Cancer Epigenome 
Epigenetic abnormalities in lung and other cancers continue to be defined at a rapid pace. We are coming to appreciate that cancers have an “epigenetic landscape” wherein genes vulnerable to abnormalities, such as promoter DNA hypermethylation and associated gene silencing, tend to reside in defined nuclear positions and chromosome domains and relationships to chromatin regulation, which facilitates states of stem cell renewal. These same genes and domains are also vulnerable to epigenetic abnormalities induced by factors to which cells are exposed during cancer risk states, such as chronic inflammation. We can use all of this basic information for translational purposes in terms of deriving biomarkers for cancer risk states and detection and therapeutic strategies.
PMCID: PMC3359110  PMID: 22550245
epigenetic; cancer; DNA hypermethylation
3.  Cancer as a Manifestation of Aberrant Chromatin Structure 
In this article we review many important epigenetic changes in early carcinogenesis and discuss the possibility of these alterations being targeted for therapeutic intervention in the future. Both regional DNA methylation and global chromatin packaging are interrelated partners that function in concert to control gene transcription. We first summarize briefly DNA methylation and its role in gene expression. Then, we focus on how the DNA is packaged into chromatin and the tight relationship between chromatin and DNA methylation. A more complete understanding of these key, regulatory events is vital in approaching a more rational drug therapy to various malignancies.
PMCID: PMC3586529  PMID: 17464240
cancer; chromatin modification; DNA methylation; epigenetics
4.  5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft 
Oncotarget  2013;4(10):1737-1747.
Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an “oncometabolite” that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gliomas, the development of effective therapies has proved challenging in part due to the scarcity of endogenous mutant in vivo models. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma model which rapidly grows in vivo, produces 2-HG and exhibits DNA hypermethylation. Using this model, we have demonstrated the preclinical efficacy and mechanism of action of the FDA approved demethylating drug 5-azacytidine in vivo. Long term administration of 5-azacytidine resulted in reduction of DNA methylation of promoter loci, induction of glial differentiation, reduction of cell proliferation and a significant reduction in tumor growth. Tumor regression was observed at 14 weeks and subsequently showed no signs of re-growth at 7 weeks despite discontinuation of therapy. These results have implications for clinical trials of demethylating agents for patients with IDH mutated gliomas.
PMCID: PMC3858560  PMID: 24077805
IDH; 5-azacytidine; progressive glioma; xenograft; astrocytoma; methylation
5.  CpG Island Methylator Phenotype Positive Tumors in the Absence of MLH1 Methylation Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis 
Little information is available on genetic and epigenetic changes in duodenal adenocarcinomas. The purpose was to identify possible subsets of duodenal adenocarcinomas based on microsatellite instability (MSI), DNA methylation, mutations in the KRAS and BRAF genes, clinicopathologic features, and prognosis.
Experimental Design
Demographics, tumor characteristics and survival were available for 99 duodenal adenocarcinoma patients. Testing for KRAS and BRAF mutations, MSI, MLH1 methylation and CpG island methylator phenotype (CIMP) status was performed. A Cox proportional hazard model was built to predict survival.
CIMP+ was detected in 27 of 99 (27.3%) duodenal adenocarcinomas, and was associated with MSI (P = 0.011) and MLH1 methylation (P < 0.001), but not with KRAS mutations (P = 0.114), as compared to CIMP− tumors. No BRAF V600E mutation was detected. Among the CIMP+ tumors, 15 (55.6%) were CIMP+/MLH1-unmethylated (MLH1-U). Kaplan-Meier analysis showed tumors classified by CIMP, CIMP/MLH1 methylation status or CIMP/MSI status could predict overall survival (OS; P = 0.047, 0.002, and 0.002, respectively), while CIMP/MLH1 methylation status could also predict time-to-recurrence (TTR; P = 0.016). In multivariate analysis, CIMP/MLH1 methylation status showed a significant prognostic value regarding both OS (P < 0.001) and TTR (P = 0.023). Patients with CIMP+/MLH1-U tumors had the worst OS and TTR.
Our results demonstrate existence of CIMP in duodenal adenocarcinomas. The combination of CIMP+/MLH1-U appears to be independently associated with poor prognosis in patients with duodenal adenocarcinomas. This study also suggests that BRAF mutations are not involved in duodenal tumorigenesis, MSI or CIMP development.
PMCID: PMC3482463  PMID: 22825585
Duodenal Adenocarcinoma; CpG Island Methylator Phenotype; Microsatellite Instability; Prognosis
6.  The future of epigenetic therapy in solid tumours—lessons from the past 
Nature reviews. Clinical oncology  2013;10(5):256-266.
The promise of targeting epigenetic abnormalities for cancer therapy has not been realized for solid tumours, although increasing evidence is demonstrating its worth in haematological malignancies. In fact, true clinical efficacy in haematopoietic-related neoplasms has only become evident at low doses of epigenetic-targeting drugs (namely, inhibitors of histone deacetylase and DNA methyltransferases). Describing data from preclinical studies and early clinical trial results, we hypothesize that in using low-dose epigenetic-modulating agents, tumour cells can be reprogrammed, which overrides any immediate cytotoxic and off-target effect observed at high dose. We suggest that such optimization of drug dosing and scheduling of currently available agents could give these agents a prominent place in cancer management—when used alone or in combination with other therapies. If so, optimal use of these known agents might also pave the way for the introduction of other agents that target the epigenome.
PMCID: PMC3730253  PMID: 23546521
7.  Methylation of the Claudin 1 Promoter Is Associated with Loss of Expression in Estrogen Receptor Positive Breast Cancer 
PLoS ONE  2013;8(7):e68630.
Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA). Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.
PMCID: PMC3701071  PMID: 23844228
8.  Defining a Gene Promoter Methylation Signature in Sputum for Lung Cancer Risk Assessment 
To evaluate the methylation state of 31 genes in sputum as biomarkers in an expanded nested, case-control study from the Colorado Cohort and to assess the replication of results from the most promising genes in an independent case-control study of asymptomatic Stage I lung cancer patients from New Mexico.
Experimental Design
Cases and controls from Colorado and New Mexico were interrogated for methylation of up to 31 genes using nested, methylation specific PCR. Individual genes and methylation indices were used to assess the association between methylation and lung cancer with logistic regression modeling.
Seventeen genes with odds ratios of 1.4 – 3.6 were identified and selected for replication in the New Mexico study. Overall, the direction of effects seen in New Mexico was similar to Colorado with the largest increase in case discrimination (odds ratios, 3.2 – 4.2) seen for the PAX5α, GATA5, and SULF2 genes. ROC curves generated from seven gene panels from Colorado and New Mexico studies showed prediction accuracy of 71% and 77%, respectively. A 22-fold increase in lung cancer risk was seen for a subset of New Mexico cases with five or more genes methylated. Sequence variants associated with lung cancer did not improve the accuracy of this gene methylation panel.
These studies have identified and replicated a panel of methylated genes whose integration with other promising biomarkers could initially identify the highest risk smokers for computed tomography screening for early detection of lung cancer.
PMCID: PMC3483793  PMID: 22510351
gene methylation; sputum; lung cancer; biomarker
9.  Stress and the epigenetic landscape: a link to the pathobiology of human diseases? 
Nature reviews. Genetics  2010;11(11):806-812.
Accumulating evidence points to a major role for chronic stress of cell renewal systems in the pathogenesis of important human diseases, including cancer, atherosclerosis and diabetes. Here we discuss emerging evidence that epigenetic abnormalities may make substantial contributions to these stress-induced pathologies. Although the mechanisms remain to be fully elucidated, we suggest that chronic stress can elicit heritable changes in the chromatin landscape that ‘lock’ cells in abnormal states, which then lead to disease. We emphasize the need to investigate epigenetic states in disease and links to stress and to consider how the knowledge gained through these studies may foster new means of disease prevention and management.
PMCID: PMC3148009  PMID: 20921961
10.  Biomarkers for EGFR-Antagonist Response: In the Genes and on the Genes! 
Patients with non–small cell lung carcinoma containing epidermal growth factor receptor (EGFR)–activating mutations benefit from EGFR-antagonist therapy. EGFR-antagonist sensitivity is also correlated with epithelial–mesenchymal transition, which Walter and colleagues show to be marked by DNA-methylation changes. If validated, these markers could help identify patients with wild-type EGFR who will benefit from EGFR therapy.
PMCID: PMC3586523  PMID: 22371454
12.  Abnormalities in Cancer Find a “Home on the Range” 
Cancer cell  2013;23(1):1-3.
Recent studies have highlighted large genomic regions prone to undergo epigenetic changes in cancers. In this issue of Cancer Cell, Bert and colleagues describe novel genomic domains with aberrant epigenetic changes involving concordant activation of neighboring genes. These domains involve aberrant CpG-island hypermethylation similar to that observed in gene silencing.
PMCID: PMC3586528  PMID: 23328477
13.  The epigenomic era opens 
Nature  2007;448(7153):548-549.
Readout of information from the genome depends on intricate regulation of how DNA is packaged by proteins. The great endeavour to reveal how this packaging operates pan-genomically is now under way.
PMCID: PMC3586530  PMID: 17671496
14.  Breaching the Boundaries that Safeguard against Repression 
Molecular cell  2009;34(4):395-397.
In a recent issue of Molecular Cell, Witcher and Emerson (2009) demonstrate that CTCF loss of function, via defective steps in poly (ADP-ribosyl)ation, may predispose key genes in cancer cells to addition of abnormal promoter DNA methylation and silencing.
PMCID: PMC3577062  PMID: 19481516
15.  Functional DNA demethylation is accompanied by chromatin accessibility 
Nucleic Acids Research  2013;41(7):3973-3985.
DNA methylation inhibitors such as 5-aza-2′-deoxycytidine (5-Aza-CdR) are currently used for the treatment of myelodysplastic syndrome. Although global DNA demethylation has been observed after treatment, it is unclear to what extent demethylation induces changes in nucleosome occupancy, a key determinant of gene expression. We use the colorectal cancer cell line HCT116 as a model to address this question and determine that <2% of regions demethylated by 5-Aza-CdR treatment assume an open configuration. Consolidating our findings, we detect nucleosome retention at sites of global DNA methylation loss in DKO1, an HCT116-derived non-tumorigenic cell-line engineered for DNA methyltransferase disruption. Notably, regions that are open in both HCT116 cells after treatment and in DKO1 cells include promoters belonging to tumor suppressors and genes under-expressed in colorectal cancers. Our results indicate that only a minority of demethylated promoters are associated with nucleosome remodeling, and these could potentially be the epigenetic drivers causing the loss of tumorigenicity. Furthermore, we show that the chromatin opening induced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid has strikingly distinct targets compared with those of 5-Aza-CdR, providing a mechanistic explanation for the importance of combinatorial therapy in eliciting maximal de-repression of the cancer epigenome.
PMCID: PMC3627572  PMID: 23408854
16.  Combination Epigenetic Therapy Has Efficacy in Patients with Refractory Advanced Non Small Cell Lung Cancer 
Cancer Discovery  2011;1(7):598-607.
Epigenetic alterations are strongly associated with cancer development. We conducted a phase I/II trial of combined epigenetic therapy with azacitidine and entinostat, inhibitors of DNA methylation and histone deacetylation, respectively, in extensively pretreated patients with recurrent metastatic non-small cell lung cancer. This therapy is well tolerated, and objective responses were observed, including a complete response and a partial response in a patient who remains alive and without disease progression approximately 2 years after completing protocol therapy. Median survival in the entire cohort was 6.4 months (95% CI: 3.8–9.2), comparing favorably with existing therapeutic options. Demethylation of a set of four epigenetically silenced genes known to be associated with lung cancer was detectable in serial blood samples in these patients, and was associated with improved progression-free (p=0.034) and overall survival (p=0.035). Four of 19 patients had major objective responses to subsequent anti-cancer therapies given immediately following epigenetic therapy.
PMCID: PMC3353724  PMID: 22586682
azacitidine; entinostat; demethylation; histone deacetylase inhibitor
17.  Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1 and Polycomb Members to Promoter CpG Islands 
Cancer cell  2011;20(5):606-619.
Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by treatment with hydrogen peroxide, recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of Polycomb Repressive Complex 4. Hydrogen peroxide treatment causes translocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. While high expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and localization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.
PMCID: PMC3220885  PMID: 22094255
19.  Sessile serrated adenomas and classical adenomas: an epigenetic perspective on premalignant neoplastic lesions of the gastrointestinal tract 
The diagnosis of sessile serrated adenomas (SSAs) is challenging, and there is a great deal of interobserver variability amongst pathologists in differentiating SSAs from hyperplastic polyps (HPPs). The aim of this study was (i) to assess the utility of epigenetic changes such as DNA methylation in differentiating SSAs from HPPs and (ii) to identify common methylation based molecular markers potentially useful for early detection of premalignant neoplastic lesions of gastrointestinal tract. A total of 97 primary patient adenoma samples were obtained from The Johns Hopkins Hospital pathology archive with IRB approval and HIPAA compliance. We analyzed the promoter associated CpG island methylation status of 17 genes using nested multiplex methylation specific PCR (MSP). Methylation of CDX2, hMLH1 and TLR2 was detected in SSAs and SSAs with dysplasia but not in HPPs. A subset of genes including EVL, GATAs (4 and 5), HIN-1, SFRPs (1, 2, 4 and 5), SOX17 and SYNE1 were methylated frequently in all premalignant gastrointestinal adenomas including tubular adenomas, villous adenomas, SSAs and SSAs with dysplasia but infrequently in non-premalignant polyps such as HPPs. Methylation of CDX2, hMLH1 and TLR2 may be of diagnostic utility in differentiating, histologically challenging cases of SSAs from HPPs. Genes such as EVL, GATAs, HIN-1, SFRPs, SOX17 and SYNE1, which are frequently methylated in all types of tested premalignant adenomas, may be useful as biomarkers in stool-based strategies for early detection of these adenomas and CRCs in future.
PMCID: PMC3206997  PMID: 21154739
gastrointestinal adenoma; methylation; sessile serrated; classical
20.  DNA methylation analysis on a droplet-in-oil PCR array 
Lab on a chip  2009;9(8):1059-1064.
We performed on-chip DNA methylation analysis using methylation-specific PCR (MSP) within an arrayed micro droplet-in-oil platform that is designed for more practical application of microfluidic droplet technologies in clinical applications. Unique features of this ready-to-use device include arrayed primers that are pre-deposited into open micro-reaction chambers and use of the oil phase as a companion fluid for both sample actuation and compartmentalization. These technical advantages allow for infusion of minute amounts of sample for arrayed MSP analysis, without the added complexities inherent in microfluidic droplet-based studies. Ease of use of this micro device is exemplified by analysis of two tumor suppressor promoters, p15 and TMS1 using an on-chip methylation assay. These results were consistent with standard MSP protocols, yet the simplicity of the droplet-in-oil microfluidic PCR platform provides an easy and efficient tool for DNA methylation analysis in a large-scale arrayed manner.
PMCID: PMC2829306  PMID: 19350087
21.  Epigenetic Regulation of WNT Signaling Pathway Genes in Inflammatory Bowel Disease (IBD) Associated Neoplasia 
WNT signaling pathway dysregulation is an important event in the pathogenesis of colorectal cancer (CRC) with APC mutations seen in more than 80% of sporadic CRC. However, such mutations in the WNT signaling pathway genes are rare in inflammatory bowel disease (IBD) associated neoplasia (dysplasia and cancer). This study examined the role of epigenetic silencing of WNT signaling pathway genes in the pathogenesis of IBD-associated neoplasia.
Paraffin-embedded tissue samples were obtained and methylation of ten WNT signaling pathway genes, including APC1A, APC2, SFRP1, SFRP2, SFRP4, SFRP5, DKK1, DKK3, WIF1 and LKB1, was analyzed. Methylation analysis was performed on 41 IBD samples, 27 normal colon samples (NCs), and 24 sporadic CRC samples.
Methylation of WNT signaling pathway genes is a frequent and early event in IBD and IBD-associated neoplasia. A progressive increase in the percentage of methylated genes in the WNT signaling pathway from NCs (4.2%) to IBD colitis (39.7%) to IBD-associated neoplasia (63.4%) was seen (NCs vs. IBD colitis, p<0.01; IBD colitis vs. IBD-associated neoplasia, p=0.01). In the univariate logistic regression model, methylation of APC2 (OR 4.7, 95% CI: 1.1–20.63, p=0.04), SFRP1 (OR 5.1, 95% CI: 1.1–31.9, p=0.04), and SFRP2 (OR 5.1, 95% CI: 1.1–32.3, p=0.04) was associated with progression from IBD colitis to IBD-associated neoplasia, while APC1A methylation was borderline significant (OR 4.1, 95% CI: 0.95–17.5, p=0.06). In the multivariate logistic regression model, methylation of APC1A and APC2 was more likely to be associated with IBD-associated neoplasia than IBD colitis. (OR APC1A: 6.4, 95% CI: 1.1–37.7 p=0.04; OR APC2 9.1, 95% CI: 1.3–61.7, p=0.02).
Methylation of the WNT signaling genes is an early event seen in patients with IBD colitis and there is a progressive increase in methylation of the WNT signaling genes during development of IBD-associated neoplasia. Moreover, methylation of APC1A, APC2, SFRP1, and SFRP2 appears to mark progression from IBD colitis to IBD-associated neoplasia, and these genes may serve as biomarkers for IBD-associated neoplasia.
PMCID: PMC3976145  PMID: 18716850
IBD; Methylation; WNT signaling; Colorectal cancer
22.  A decade of exploring the cancer epigenome — biological and translational implications 
Nature Reviews. Cancer  2011;11(10):726-734.
The past decade has highlighted the central role of epigenetic processes in cancer causation, progression and treatment. Next-generation sequencing is providing a window for visualizing the human epigenome and how it is altered in cancer. This view provides many surprises, including linking epigenetic abnormalities to mutations in genes that control DNA methylation, the packaging and the function of DNA in chromatin, and metabolism. Epigenetic alterations are leading candidates for the development of specific markers for cancer detection, diagnosis and prognosis. The enzymatic processes that control the epigenome present new opportunities for deriving therapeutic strategies designed to reverse transcriptional abnormalities that are inherent to the cancer epigenome.
PMCID: PMC3307543  PMID: 21941284
23.  Cancer epigenetics: linking basic biology to clinical medicine 
Cell Research  2011;21(3):502-517.
Cancer evolution at all stages is driven by both epigenetic abnormalities as well as genetic alterations. Dysregulation of epigenetic control events may lead to abnormal patterns of DNA methylation and chromatin configurations, both of which are critical contributors to the pathogenesis of cancer. These epigenetic abnormalities are set and maintained by multiple protein complexes and the interplay between their individual components including DNA methylation machinery, histone modifiers, particularly, polycomb (PcG) proteins, and chromatin remodeling proteins. Recent advances in genome-wide technology have revealed that the involvement of these dysregulated epigenetic components appears to be extensive. Moreover, there is a growing connection between epigenetic abnormalities in cancer and concepts concerning stem-like cell subpopulations as a driving force for cancer. Emerging data suggest that aspects of the epigenetic landscape inherent to normal embryonic and adult stem/progenitor cells may help foster, under the stress of chronic inflammation or accumulating reactive oxygen species, evolution of malignant subpopulations. Finally, understanding molecular mechanisms involved in initiation and maintenance of epigenetic abnormalities in all types of cancer has great potential for translational purposes. This is already evident for epigenetic biomarker development, and for pharmacological targeting aimed at reversing cancer-specific epigenetic alterations.
PMCID: PMC3193419  PMID: 21321605
cancer epigenetics; DNA methylation; polycomb proteins; cancer stem cells; biomarkers; epigenetic therapy
24.  DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes 
Nucleic Acids Research  2012;40(10):4334-4346.
While DNA methyltransferase1 (DNMT1) is classically known for its functions as a maintenance methyltransferase enzyme, additional roles for DNMT1 in gene expression are not as clearly understood. Several groups have shown that deletion of the catalytic domain from DNMT1 does not abolish repressive activity of the protein against a reporter gene. In our studies, we examine the repressor function of catalytically inactive DNMT1 at endogenous genes. First, potential DNMT1 target genes were identified by searching for genes up-regulated in HCT116 colon cancer cells genetically disrupted for DNMT1 (DNMT1−/− hypomorph cells). Next, the requirement for DNMT1 activity for repression of these genes was assessed by stably restoring expression of wild-type or catalytically inactive DNMT1. Both wild-type and mutant proteins are able to occupy the promoters and repress the expression of a set of target genes, and induce, at these promoters, both the depletion of active histone marks and the recruitment of a H3K4 demethylase, KDM1A/LSD1. Together, our findings show that there are genes for which DNMT1 acts as a transcriptional repressor independent from its methyltransferase function and that this repressive function may invoke a role for a scaffolding function of the protein at target genes.
PMCID: PMC3378872  PMID: 22278882
25.  Combination Therapy with Vidaza and Entinostat Suppresses Tumor Growth and Reprograms the Epigenome in an Orthotopic Lung Cancer Model 
Cancer research  2011;71(2):454-462.
Epigenetic therapy for solid tumors could benefit from an in vivo model that defines tumor characteristics of responsiveness and resistance to facilitate patient selection. Here we report that combining the histone deacetylase inhibitor entinostat with the demethylating agent vidaza profoundly affected growth of K-ras/p53 mutant lung adenocarcinomas engrafted orthotopically in immunocompromised nude rats by targeting and ablating pleomorphic cells that occupied up to 75% of the tumor masses. A similar reduction in tumor burden was seen with epigenetic therapy in K-ras or EGFR mutant tumors growing orthotopically. Increased expression of pro-apoptotic genes and the cyclin dependent kinase inhibitor p21 was seen. Hundreds of genes were demethylated highlighted by the re-expression of polycomb-regulated genes coding for transcription factor binding proteins and the p16 gene, a key regulator of the cell cycle. Highly significant gene expression changes were seen in key regulatory pathways involved in cell cycle, DNA damage, apoptosis, and tissue remodeling. These findings demonstrate the promise for epigenetic therapy in cancer management and provide an orthotopic lung cancer model that can assess therapeutic efficacy and reprogramming of the epigenome in tumors harboring different genetic and epigenetic profiles to guide use of these drugs.
PMCID: PMC3075424  PMID: 21224363
lung cancer; DNA methylation; polycomb; epigenetic therapy; nude rat

Results 1-25 (61)