Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A 
Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.
PMCID: PMC3902205  PMID: 24478769
Salmonella; ciprofloxacin; transcriptional regulatory genes; acrS; efflux pumps
2.  ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198 
A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.
PMCID: PMC3728480  PMID: 23914184
Salmonella; ciprofloxacin resistance; efflux pump; regulation; ram
3.  Binding of the RamR Repressor to Wild-Type and Mutated Promoters of the ramA Gene Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium 
The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family. We here studied the DNA-binding activity of the RamR repressor with the ramA promoter (PramA). As determined by high-resolution footprinting, the 28-bp-long RamR binding site covers essential features of PramA, including the −10 conserved region, the transcriptional start site of ramA, and two 7-bp inverted repeats. Based on the RamR footprint and on electrophoretic mobility shift assays (EMSAs), we propose that RamR interacts with PramA as a dimer of dimers, in a fashion that is structurally similar to the QacR-DNA binding model. Surface plasmon resonance (SPR) measurements indicated that RamR has a 3-fold-lower affinity (KD [equilibrium dissociation constant] = 191 nM) for the 2-bp-deleted PramA of an MDR S. Typhimurium clinical isolate than for the wild-type PramA (KD = 66 nM). These results confirm the direct regulatory role of RamR in the repression of ramA transcription and precisely define how an alteration of its binding site can give rise to an MDR phenotype.
PMCID: PMC3264254  PMID: 22123696
4.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium▿  
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
PMCID: PMC2443889  PMID: 18443112
5.  Ciprofloxacin-resistant Salmonella Kentucky in Travelers 
Emerging Infectious Diseases  2006;12(10):1611-1612.
PMCID: PMC3290958  PMID: 17176589
Salmonella; ciprofloxacin resistance; human; travelers; letter
7.  AcrAB-TolC Directs Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium DT104 
Antimicrobial Agents and Chemotherapy  2004;48(10):3729-3735.
Multidrug-resistant Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) strains harbor a genomic island, called Salmonella genomic island 1 (SGI1), which contains an antibiotic resistance gene cluster conferring resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracyclines. They may be additionally resistant to quinolones. Among the antibiotic resistance genes there are two, i.e., floR and tet(G), which code for efflux pumps of the major facilitator superfamily with 12 transmembrane segments that confer resistance to chloramphenicol-florfenicol and the tetracyclines, respectively. In the present study we determined, by constructing acrB and tolC mutants, the role of the AcrAB-TolC multidrug efflux system in the multidrug resistance of several DT104 strains displaying additional quinolone resistance or not displaying quinolone resistance. This study shows that the quinolone resistance and the decreased fluoroquinolone susceptibilities of the strains are highly dependent on the AcrAB-TolC efflux system and that single mutations in the quinolone resistance-determining region of gyrA are of little relevance in mediating this resistance. Overproduction of the AcrAB efflux pump, as determined by Western blotting with an anti-AcrA polyclonal antibody, appeared to be the major mechanism of resistance to quinolones. Moreover, chloramphenicol-florfenicol and tetracycline resistance also appeared to be highly dependent on the presence of AcrAB-TolC, since the introduction of mutations in the respective acrB and tolC genes resulted in a susceptible or intermediate resistance phenotype, according to clinical MIC breakpoints, despite the presence of the FloR and Tet(G) efflux pumps. Resistance to other antibiotics, ampicillin, streptomycin, and sulfonamides, was not affected in the acrB and tolC mutants of DT104 strains harboring SGI1. Therefore, AcrAB-TolC appears to direct efflux-mediated resistance to quinolones, chloramphenicol-florfenicol, and tetracyclines in multidrug-resistant S. enterica serovar Typhimurium DT104 strains.
PMCID: PMC521921  PMID: 15388427
8.  Salmonella enterica Serotype Typhimurium DT 104 Antibiotic Resistance Genomic Island I in Serotype Paratyphi B 
Emerging Infectious Diseases  2002;8(4):430-433.
We have identified Salmonella genomic island I (SGI1) in an isolate of Salmonella enterica serotype Paratyphi B. This antibiotic-resistance gene cluster, which confers multidrug resistance, has been previously identified in S. enterica serotype Typhimurium phage types DT 104 and DT 120 and in S. enterica serotype Agona.
PMCID: PMC2730239  PMID: 11971780
Salmonella genomic island I; Typhimurium DT 104; Paratyphi B
9.  Nonenzymatic Chloramphenicol Resistance Mediated by IncC Plasmid R55 Is Encoded by a floR Gene Variant 
The IncC plasmid R55, initially described in the 1970s and isolated from Klebsiella pneumoniae, confers nonenzymatic chloramphenicol resistance. The gene coding for this resistance was cloned and sequenced and shows 95 to 97% nucleotide identity with the recently reported floR gene from Salmonella enterica serovar Typhimurium DT104 and from Escherichia coli animal isolates, respectively, conferring cross-resistance to florfenicol.
PMCID: PMC90660  PMID: 11451703
10.  Use of Recombinant BP26 Protein in Serological Diagnosis of Brucella melitensis Infection in Sheep 
Previously a Brucella protein named CP28, BP26, or Omp28 has been identified as an immunodominant antigen in infected cattle, sheep, goats, and humans. In the present study we evaluated antibody responses of infected and B. melitensis Rev.1-vaccinated sheep to the BP26 protein using purified recombinant BP26 protein produced in Escherichia coli in an indirect enzyme-linked immunosorbent assay (I-ELISA). The specificity of the I-ELISA determined with sera from healthy sheep (n = 106) was 93%. The sensitivity of the I-ELISA assessed with sera from naturally infected and suspected sheep found positive in the current conventional diagnostic tests was as follows: 100% for bacteriologically and serologically positive sheep (n = 50), 88% for bacteriologically negative but serologically and delayed-type hypersensitivity-positive sheep (n = 50), and 84% for bacteriologically and serologically negative but delayed-type hypersensitivity-positive sheep (n = 19). However, the absorbance values observed did not reach those observed in an I-ELISA using purified O-polysaccharide (O-PS) as an antigen. In sheep experimentally infected with B. melitensis H38 the antibody response to BP26 was delayed and much weaker than that to O-PS. Nevertheless, the BP26 protein appears to be a good diagnostic antigen to be used in confirmatory tests and for serological differentiation between infected and B. melitensis Rev.1-vaccinated sheep. Weak antibody responses to BP26 in some of the latter sheep suggest that a B. melitensis Rev.1 bp26 gene deletion mutant should be constructed to ensure this differentiation.
PMCID: PMC96141  PMID: 11427425
11.  Plasmid-Mediated Florfenicol Resistance Encoded by the floR Gene in Escherichia coli Isolated from Cattle 
Antimicrobial Agents and Chemotherapy  2000;44(10):2858-2860.
A florfenicol resistance gene almost identical to floR of Salmonella enterica serovar Typhimurium DT104 was detected on 110- to 125-kb plasmids in Escherichia coli isolates of animal origin. Analysis of the floR gene flanking regions of one of the plasmids showed that they were different from those encountered in S. enterica serovar Typhimurium DT104.
PMCID: PMC90164  PMID: 10991873

Results 1-11 (11)