PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  The PhoP/PhoQ System and Its Role in Serratia marcescens Pathogenesis 
Journal of Bacteriology  2012;194(11):2949-2961.
Serratia marcescens is able to invade, persist, and multiply inside nonphagocytic cells, residing in nonacidic, nondegradative, autophagosome-like vacuoles. In this work, we have examined the physiological role of the PhoP/PhoQ system and its function in the control of critical virulence phenotypes in S. marcescens. We have demonstrated the involvement of the PhoP/PhoQ system in the adaptation of this bacterium to growth on scarce environmental Mg2+, at acidic pH, and in the presence of polymyxin B. We have also shown that these environmental conditions constitute signals that activate the PhoP/PhoQ system. We have found that the two S. marcescens mgtE orthologs present a conserved PhoP-binding motif and demonstrated that mgtE1 expression is PhoP dependent, reinforcing the importance of PhoP control in magnesium homeostasis. Finally, we have demonstrated that phoP expression is activated intracellularly and that a phoP mutant strain is defective in survival inside epithelial cells. We have shown that the Serratia PhoP/PhoQ system is involved in prevention of the delivery to degradative/acidic compartments.
doi:10.1128/JB.06820-11
PMCID: PMC3370626  PMID: 22467788
2.  mgtA Expression Is Induced by Rob Overexpression and Mediates a Salmonella enterica Resistance Phenotype▿  
Journal of Bacteriology  2008;190(14):4951-4958.
Rob is a member of the Sox/Mar subfamily of AraC/XylS-type transcriptional regulators implicated in bacterial multidrug, heavy metal, superoxide, and organic solvent resistance phenotypes. We demonstrate that, in Salmonella enterica, Rob overexpression upregulates the transcription of mgtA, which codes for the MgtA Mg2+ transporter. mgtA was previously characterized as a member of the Mg2+-modulated PhoPQ regulon. Here we demonstrate that Rob (but not its paralog protein SoxS or MarA) is able to induce mgtA transcription in a PhoP-independent fashion by binding to a conserved Mar/Sox/Rob motif localized downstream of the PhoP-box and overlapping the PhoP-dependent transcriptional start site. We found that Rob-induced mgtA expression confers low-level cyclohexane resistance on Salmonella. Because mgtA intactness is required for Rob-induced cyclohexane resistance, provided the AcrAB multidrug efflux pump can be expressed, we postulate that MgtA is involved in the AcrAB-mediated cyclohexane detoxification mechanism promoted by Rob in Salmonella.
doi:10.1128/JB.00195-08
PMCID: PMC2447000  PMID: 18487336

Results 1-2 (2)