Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Spatial and Temporal Variation of Cultivable Communities of Co-occurring Endophytes and Pathogens in Wheat 
The aim of this work was to investigate the diversity of endogenous microbes from wheat (Triticum aestivum) and to study the structure of its microbial communities, with the ultimate goal to provide candidate strains for future evaluation as potential biological control agents against wheat diseases. We sampled plants from two wheat cultivars, Apache and Caphorn, showing different levels of susceptibility to Fusarium head blight, a major disease of wheat, and tested for variation in microbial diversity and assemblages depending on the host cultivar, host organ (aerial organs vs. roots) or host maturity. Fungi and bacteria were isolated using a culture dependent method. Isolates were identified using ribosomal DNA sequencing and we used diversity analysis to study the community composition of microorganisms over space and time. Results indicate great species diversity in wheat, with endophytes and pathogens co-occurring inside plant tissues. Significant differences in microbial communities were observed according to host maturity and host organs but we did not find clear differences between host cultivars. Some species isolated have not yet been reported as wheat endophytes and among all species recovered some might be good candidates as biological control agents, given their known effects toward plant pathogens.
PMCID: PMC4814462  PMID: 27065969
fungi; bacteria; Triticum aestivum; diversity; microbial communities; biological control agents
2.  Uncovering plant-pathogen crosstalk through apoplastic proteomic studies 
Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.
PMCID: PMC4042593  PMID: 24917874
apoplast; cell wall; proteomics; secretome; pathogen; defense; MAMP
3.  Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes 
BMC Plant Biology  2013;13:24.
The extracellular space or apoplast forms a path through the whole plant and acts as an interface with the environment. The apoplast is composed of plant cell wall and space within which apoplastic fluid provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Large-scale proteomic analysis reveals the protein content of the grapevine leaf apoplastic fluid and the free interactive proteome map considerably facilitates the study of the grapevine proteome.
To obtain a snapshot of the grapevine apoplastic fluid proteome, a vacuum-infiltration-centrifugation method was optimized to collect the apoplastic fluid from non-challenged grapevine leaves. Soluble apoplastic protein patterns were then compared to whole leaf soluble protein profiles by 2D-PAGE analyses. Subsequent MALDI-TOF/TOF mass spectrometry of tryptically digested protein spots was used to identify proteins. This large-scale proteomic analysis established a well-defined proteomic map of whole leaf and leaf apoplastic soluble proteins, with 223 and 177 analyzed spots, respectively. All data arising from proteomic, MS and MS/MS analyses were deposited in the public database world-2DPAGE. Prediction tools revealed a high proportion of (i) classical secreted proteins but also of non-classical secreted proteins namely Leaderless Secreted Proteins (LSPs) in the apoplastic protein content and (ii) proteins potentially involved in stress reactions and/or in cell wall metabolism.
This approach provides free online interactive reference maps annotating a large number of soluble proteins of the whole leaf and the apoplastic fluid of grapevine leaf. To our knowledge, this is the first detailed proteome study of grapevine apoplastic fluid providing a comprehensive overview of the most abundant proteins present in the apoplast of grapevine leaf that could be further characterized in order to elucidate their physiological function.
PMCID: PMC3640900  PMID: 23391302
Apoplastic fluid extraction; 2D electrophoresis; Mass spectrometry; Proteomic map; Vitis vinifera
4.  Expression and In Situ Localization of Two Major PR Proteins of Grapevine Berries during Development and after UV-C Exposition 
PLoS ONE  2012;7(8):e43681.
In grapevine Vitis vinifera L. cv Pinot noir, the Pathogenesis-Related (PR) proteins CHI4D and TL3 are among the most abundant extractable PR proteins of ripe berries and accumulate during berry ripening from véraison until full maturation. Evidence was supplied in favor of the involvement of these two protein families in plant defense mechanisms and plant development. In order to better understand CHI4D and TL3 function in grapevine, we analyzed their temporal and spatial pattern of expression during maturation and after an abiotic stress (UV-C) by in situ hybridization (ISH) and immunohistolocalization. In ripening berries, CHI4D and TL3 genes were mainly expressed in the exocarp and around vascular bundles of the mesocarp. In UV-C exposed berries, CHI4D and TL3 gene expression was strongly induced before véraison. Corresponding proteins localized in the exocarp and, to a lesser extent, around vascular bundles of the mesocarp. The spatial and temporal accumulation of the two PR proteins during berry maturation and after an abiotic stress is discussed in relation to their putative roles in plant defense.
PMCID: PMC3427166  PMID: 22937077
5.  Rhamnolipid Biosurfactants as New Players in Animal and Plant Defense against Microbes 
Rhamnolipids are known as very efficient biosurfactant molecules. They are used in a wide range of industrial applications including food, cosmetics, pharmaceutical formulations and bioremediation of pollutants. The present review provides an overview of the effect of rhamnolipids in animal and plant defense responses. We describe the current knowledge on the stimulation of plant and animal immunity by these molecules, as well as on their direct antimicrobial properties. Given their ecological acceptance owing to their low toxicity and biodegradability, rhamnolipids have the potential to be useful molecules in medicine and to be part of alternative strategies in order to reduce or replace pesticides in agriculture.
PMCID: PMC3100842  PMID: 21614194
rhamnolipids; plant immunity; animal immunity; antimicrobial properties

Results 1-5 (5)