PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database 
PLoS Genetics  2012;8(3):e1002548.
More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinson's disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of ∼27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P<5×10−8) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P = 1.3×10−8). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.
Author Summary
The genetic basis of Parkinson's disease is complex, i.e. it is determined by a number of different disease-causing and disease-predisposing genes. Especially the latter have proven difficult to find, evidenced by more than 800 published genetic association studies, typically showing discrepant results. To facilitate the interpretation of this large and continuously increasing body of data, we have created a freely available online database (“PDGene”: http://www.pdgene.org) which provides an exhaustive account of all published genetic association studies in PD. One particularly useful feature is the calculation and display of up-to-date summary statistics of published data for overlapping DNA sequence variants (polymorphisms). These meta-analyses revealed eleven gene loci that showed a statistically very significant (P<5×10−8; a.k.a. genome-wide significance) association with risk for PD: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, SYT11/RAB25. In addition and purely by data-mining, we identified one novel PD susceptibility locus in a gene called ITGA8 (rs7077361, P = 1.3×10−8). We note that our continuously updated database represents the most comprehensive research synopsis of genetic association studies in PD to date. In addition to vastly facilitating the work of other PD geneticists, our approach may serve as a valuable example for other complex diseases.
doi:10.1371/journal.pgen.1002548
PMCID: PMC3305333  PMID: 22438815
2.  The COPD genetic association compendium: a comprehensive online database of COPD genetic associations 
Human Molecular Genetics  2009;19(3):526-534.
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. COPD is thought to arise from the interaction of environmental exposures and genetic susceptibility, and major research efforts are underway to identify genetic determinants of COPD susceptibility. With the exception of SERPINA1, genetic associations with COPD identified by candidate gene studies have been inconsistently replicated, and this literature is difficult to interpret. We conducted a systematic review and meta-analysis of all population-based, case–control candidate gene COPD studies indexed in PubMed before 16 July 2008. We stored our findings in an online database, which serves as an up-to-date compendium of COPD genetic associations and cumulative meta-analysis estimates. On the basis of our systematic review, the vast majority of COPD candidate gene era studies are underpowered to detect genetic effect odds ratios of 1.2–1.5. We identified 27 genetic variants with adequate data for quantitative meta-analysis. Of these variants, four were significantly associated with COPD susceptibility in random effects meta-analysis, the GSTM1 null variant (OR 1.45, CI 1.09–1.92), rs1800470 in TGFB1 (0.73, CI 0.64–0.83), rs1800629 in TNF (OR 1.19, CI 1.01–1.40) and rs1799896 in SOD3 (OR 1.97, CI 1.24–3.13). In summary, most COPD candidate gene era studies are underpowered to detect moderate-sized genetic effects. Quantitative meta-analysis identified four variants in GSTM1, TGFB1, TNF and SOD3 that show statistically significant evidence of association with COPD susceptibility.
doi:10.1093/hmg/ddp519
PMCID: PMC2798725  PMID: 19933216

Results 1-2 (2)