Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Magnetic nanoparticle-based hyperthermia for cancer treatment 
Nanotechnology involves the study of nature at a very small scale, searching new properties and applications. The development of this area of knowledge affects greatly both biotechnology and medicine disciplines. The use of materials at the nanoscale, in particular magnetic nanoparticles, is currently a prominent topic in healthcare and life science. Due to their size-tunable physical and chemical properties, magnetic nanoparticles have demonstrated a wide range of applications ranging from medical diagnosis to treatment. Combining a high saturation magnetization with a properly functionalized surface, magnetic nanoparticles are provided with enhanced functionality that allows them to selectively attach to target cells or tissues and play their therapeutic role in them. In particular, iron oxide nanoparticles are being actively investigated to achieve highly efficient carcinogenic cell destruction through magnetic hyperthermia treatments. Hyperthermia in different approaches has been used combined with radiotherapy during the last decades, however, serious harmful secondary effects have been found in healthy tissues to be associated with these treatments. In this framework, nanotechnology provides a novel and original solution with magnetic hyperthermia, which is based on the use of magnetic nanoparticles to remotely induce local heat when a radiofrequency magnetic field is applied, provoking a temperature increase in those tissues and organs where the tumoral cells are present. Therefore, one important factor that determines the efficiency of this technique is the ability of magnetic nanoparticles to be driven and accumulated in the desired area inside the body. With this aim, magnetic nanoparticles must be strategically surface functionalized to selectively target the injured cells and tissues.
PMCID: PMC3863197  PMID: 24416585
Nanotechnology; Hyperthermia; Nanoparticles
2.  The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles 
Nanoscale Research Letters  2011;6(1):383.
The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved.
PACS: 80; 87; 87.85jf
PMCID: PMC3211476  PMID: 21711915

Results 1-2 (2)