PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  SKPDB: a structural database of shikimate pathway enzymes 
BMC Bioinformatics  2010;11:12.
Background
The functional and structural characterisation of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design. The main interest in studying shikimate pathway enzymes involves the fact that they are essential for bacteria but do not occur in humans, making them selective targets for design of drugs that do not directly impact humans.
Description
The ShiKimate Pathway DataBase (SKPDB) is a relational database applied to the study of shikimate pathway enzymes in microorganisms and plants. The current database is updated regularly with the addition of new data; there are currently 8902 enzymes of the shikimate pathway from different sources. The database contains extensive information on each enzyme, including detailed descriptions about sequence, references, and structural and functional studies. All files (primary sequence, atomic coordinates and quality scores) are available for downloading. The modeled structures can be viewed using the Jmol program.
Conclusions
The SKPDB provides a large number of structural models to be used in docking simulations, virtual screening initiatives and drug design. It is freely accessible at http://lsbzix.rc.unesp.br/skpdb/.
doi:10.1186/1471-2105-11-12
PMCID: PMC2824673  PMID: 20055992
2.  Purification, partial characterization and preliminary X-ray diffraction analysis of a mannose-specific lectin from Cymbosema roseum seeds 
A lectin from C. roseum seeds (CRL) has been purified, characterized and crystallized.
A lectin from Cymbosema roseum seeds (CRL) was purified, characterized and crystallized. The best crystals grew in a month and were obtained by the vapour-diffusion method using a precipitant solution consisting of 0.1 M Tris–HCl pH 7.8, 8%(w/v) PEG 3350 and 0.2 M proline at a constant temperature of 293 K. A data set was collected to 1.77 Å resolution at a synchrotron-radiation source. CRL crystals are orthorhombic, belonging to space group P212121. Crystallographic refinement and full amino-acid sequence determination are in progress.
doi:10.1107/S174430910600371X
PMCID: PMC2197170  PMID: 16511310
Cymbosema roseum; Diocleinae; lectins
3.  Crystallization and preliminary X-ray diffraction analysis of a new chitin-binding protein from Parkia platycephala seeds 
Crystals of P. platycephala chintinase/lectin (PPL-2) belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å. The preliminary cystal structure of PPL-2 was solved at a resolution of 1.73 Å by molecular replacement, presenting a correlation coefficient of 0.558 and an R factor of 0.439.
A chitin-binding protein named PPL-2 was purified from Parkia platycephala seeds and crystallized. Crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 55.19, b = 59.95, c = 76.60 Å, and grew over several days at 293 K using the hanging-drop method. Using synchrotron radiation, a complete structural data set was collected to 1.73 Å resolution. The preliminary crystal structure of PPL-2, determined by molecular replacement, presents a correlation coefficient of 0.558 and an R factor of 0.439. Crystallographic refinement is in progress.
doi:10.1107/S1744309105024462
PMCID: PMC1978108  PMID: 16511174
chitin-binding proteins; chitinases; Parkia platycephala; lectins
4.  Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules 
Background
Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from Canavalia gladiata seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, α-aminobutyric acid (Abu), is bound.
Results
The overall structure of native CGL and complexed with α-methyl-mannoside and Abu have been refined at 2.3 Å and 2.31 Å resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.
Conclusion
The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.
doi:10.1186/1472-6807-7-52
PMCID: PMC1955443  PMID: 17683532
5.  Molecular models of NS3 protease variants of the Hepatitis C virus 
Background
Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.
Results
The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures.
Conclusions
This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
doi:10.1186/1472-6807-5-1
PMCID: PMC547903  PMID: 15663787

Results 1-5 (5)