Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Translational Homeostasis via the mRNA Cap-Binding Protein, eIF4E 
Molecular cell  2012;46(6):847-858.
Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. eIF4E, the mRNA 5′ cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. eIF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of eIF4E for translation, a drastic knockdown of eIF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in eIF4E-knockdown cells. Hypophosphorylated 4E-BP1, which binds to eIF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of eIF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.
PMCID: PMC4085128  PMID: 22578813
2.  Degradation of Newly Synthesized Polypeptides by Ribosome-Associated RACK1/c-Jun N-Terminal Kinase/Eukaryotic Elongation Factor 1A2 Complex 
Molecular and Cellular Biology  2013;33(13):2510-2526.
Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.
PMCID: PMC3700114  PMID: 23608534
3.  Functional Specialization in Proline Biosynthesis of Melanoma 
PLoS ONE  2012;7(9):e45190.
Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.
PMCID: PMC3443215  PMID: 23024808
4.  Effective inhibition of melanoma by BI-69A11 is mediated by dual targeting of the AKT and NF-κB pathways 
Pigment cell & melanoma research  2011;24(4):703-713.
In melanoma, the activation of pro-survival signaling pathways, such as the AKT and NF-κB pathways, are critical for tumor growth. We have recently reported that the AKT inhibitor BI-69A11 causes efficient inhibition of melanoma growth. Here, we show that in addition to its AKT inhibitory activity, BI-69A11 also targets the NF-κB pathway. In melanoma cell lines, BI-69A11 inhibited TNF-α-stimulated IKKα/β and IκB phosphorylation as well as NF-κB reporter gene expression. Furthermore, the effective inhibition of melanoma growth by BI-69A11 was attenuated upon NF-κB activation. Mechanistically, reduced NF-κB signaling by BI-69-A11 is mediated by the inhibition of sphingosine kinase 1, identified in a screen of 315 kinases. Significantly, we demonstrate that BI-69A11 is well-tolerated and orally active against UACC 903 and SW1 melanoma xenografts. Our results demonstrate that BI-69A11 inhibits both the AKT and NF-κB pathways and that the dual targeting of these pathways may be efficacious as a therapeutic strategy in melanoma.
Although B-RAF and MEK inhibitors have shown promise in the clinic against melanoma, the development of resistance to these singly targeted agents inevitably results. These observations underscore the plasticity of melanoma to chemotherapeutic agents and further emphasize the need to apply combinatorial targeting of signaling pathways as a strategy to maximize therapeutic response. The PI3K/AKT and NF-κB signaling pathways are altered in melanoma, presenting additional opportunities for target inhibition. Our studies demonstrate that the AKT inhibitor, BI-69A11, also inhibits the NF-κB pathway and that dual inhibition of both pathways is responsible for the anti-tumor efficacy of this molecule.
PMCID: PMC3158838  PMID: 21592316
melanoma; AKT; NF-kB; targeted therapy
5.  Identification of Host Factors Involved in Borna Disease Virus Cell Entry through a Small Interfering RNA Functional Genetic Screen▿  
Journal of Virology  2010;84(7):3562-3575.
Borna disease virus (BDV), the prototypic member of the Bornaviridae family, within the order Mononegavirales, is highly neurotropic and constitutes an important model system for the study of viral persistence in the central nervous system (CNS) and associated disorders. The virus surface glycoprotein (G) has been shown to direct BDV cell entry via receptor-mediated endocytosis, but the mechanisms governing cell tropism and propagation of BDV within the CNS are unknown. We developed a small interfering RNA (siRNA)-based screening to identify cellular genes and pathways that specifically contribute to BDV G-mediated cell entry. Our screen relied on silencing-mediated increased survival of cells infected with rVSVΔG*/BDVG, a cytolytic recombinant vesicular stomatitis virus expressing BDV G that mimics the cell tropism and entry pathway of bona fide BDV. We identified 24 cellular genes involved in BDV G-mediated cell entry. Identified genes are known to participate in a broad range of distinct cellular functions, revealing a complex process associated with BDV cell entry. The siRNA-based screening strategy we have developed should be applicable to identify cellular genes contributing to cell entry mediated by surface G proteins of other viruses.
PMCID: PMC2838125  PMID: 20071576
6.  Differential Regulation of the TRAIL Death Receptors DR4 and DR5 by the Signal Recognition Particle 
Molecular Biology of the Cell  2004;15(11):5064-5074.
TRAIL (TNF-related apoptosis-inducing ligand) death receptors DR4 and DR5 facilitate the selective elimination of malignant cells through the induction of apoptosis. From previous studies the regulation of the DR4 and DR5 cell-death pathways appeared similar; nevertheless in this study we screened a library of small interfering RNA (siRNA) for genes, which when silenced, differentially affect DR4- vs. DR5-mediated apoptosis. These experiments revealed that expression of the signal recognition particle (SRP) complex is essential for apoptosis mediated by DR4, but not DR5. Selective diminution of SRP subunits by RNA interference resulted in a dramatic decrease in cell surface DR4 receptors that correlated with inhibition of DR4-dependent cell death. Conversely, SRP silencing had little influence on cell surface DR5 levels or DR5-mediated apoptosis. Although loss of SRP function in bacteria, yeast and protozoan parasites causes lethality or severe growth defects, we observed no overt phenotypes in the human cancer cells studied—even in stable cell lines with diminished expression of SRP components. The lack of severe phenotype after SRP depletion allowed us to delineate, for the first time, a mechanism for the differential regulation of the TRAIL death receptors DR4 and DR5—implicating the SRP complex as an essential component of the DR4 cell-death pathway.
PMCID: PMC524775  PMID: 15356269

Results 1-6 (6)