PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A Novel Rapid DNA Microarray Assay Enables Identification of 37 Mycoplasma Species and Highlights Multiple Mycoplasma Infections 
PLoS ONE  2012;7(3):e33237.
Mycoplasmas comprise a conglomerate of pathogens and commensals occurring in humans and animals. The genus Mycoplasma alone contains more than 120 species at present, and new members are continuously being discovered. Therefore, it seems promising to use a single highly parallel detection assay rather than develop separate tests for each individual species. In this study, we have designed a DNA microarray carrying 70 oligonucleotide probes derived from the 23S rRNA gene and 86 probes from the tuf gene target regions. Following a PCR amplification and biotinylation step, hybridization on the array was shown to specifically identify 31 Mycoplasma spp., as well as 3 Acholeplasma spp. and 3 Ureaplasma spp. Members of the Mycoplasma mycoides cluster can be recognized at subgroup level. This procedure enables parallel detection of Mollicutes spp. occurring in humans, animals or cell culture, from mono- and multiple infections, in a single run. The main advantages of the microarray assay include ease of operation, rapidity, high information content, and affordability. The new test's analytical sensitivity is equivalent to that of real-time PCR and allows examination of field samples without the need for culture. When 60 field samples from ruminants and birds previously analyzed by denaturing-gradient gel electrophoresis (DGGE) were tested by the microarray assay both tests identified the same agent in 98.3% of the cases. Notably, microarray testing revealed an unexpectedly high proportion (35%) of multiple mycoplasma infections, i.e., substantially more than DGGE (15%). Two of the samples were found to contain four different Mycoplasma spp. This phenomenon deserves more attention, particularly its implications for epidemiology and treatment.
doi:10.1371/journal.pone.0033237
PMCID: PMC3315567  PMID: 22479374
2.  Protein-Specific Analysis of Humoral Immune Responses in a Clinical Trial for Vaccines against Contagious Bovine Pleuropneumonia▿ †  
Specific humoral immune responses in a clinical trial on cattle for vaccines against contagious bovine pleuropneumonia (CBPP) were investigated. The trial included a subunit vaccine consisting of five recombinant putative variable surface proteins of the infectious agent Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides SC) compared to the currently approved attenuated vaccine strain T1/44 and untreated controls. Humoral immune responses to 65 individual recombinant surface proteins of M. mycoides SC were monitored by a recently developed bead-based array assay. Responses to the subunit vaccine components were found to be weak. Animals vaccinated with this vaccine were not protected and had CBPP lesions similar to those of the untreated controls. In correlating protein-specific humoral responses to T1/44-induced immunity, five proteins associated with a protective immune response were identified by statistical evaluation, namely, MSC_1046 (LppQ), MSC_0271, MSC_0136, MSC_0079, and MSC_0431. These five proteins may be important candidates in the development of a novel subunit vaccine against CBPP.
doi:10.1128/CVI.00019-10
PMCID: PMC2863394  PMID: 20357055
3.  VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia 
BMC Microbiology  2008;8:193.
Background
Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation.
Results
We have developed variable number tandem repeat (VNTR) analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320.
We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates.
Conclusion
VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.
doi:10.1186/1471-2180-8-193
PMCID: PMC2585094  PMID: 18992155
4.  Molecular Epidemiological Analysis of Mycoplasma bovis Isolates from the United Kingdom Shows Two Genetically Distinct Clusters 
Journal of Clinical Microbiology  2004;42(10):4556-4565.
Mycoplasma bovis is an important veterinary pathogen causing pneumonia, arthritis, and mastitis in infected cattle. We investigated the genetic diversity of 53 isolates collected in the United Kingdom between 1996 and 2002 with pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP), and random amplified polymorphic DNA (RAPD) analysis. In addition, the influence of variable surface protein (Vsp) profiles on the profiles generated with molecular typing techniques was studied. Both AFLP and RAPD separated the isolates into two distinct groups, but PFGE showed less congruence with the other techniques. There was no clear relationship between the geographic origin or year of isolation of the isolates and the profiles produced. No correlation between Vsp profiles and any of the molecular typing techniques was observed. We propose that RAPD and AFLP provide valuable tools for molecular typing of M. bovis.
doi:10.1128/JCM.42.10.4556-4565.2004
PMCID: PMC522341  PMID: 15472309
5.  Differentiation of Mycoplasma Species by 16S Ribosomal DNA PCR and Denaturing Gradient Gel Electrophoresis Fingerprinting 
Journal of Clinical Microbiology  2003;41(10):4844-4847.
Denaturing gradient gel electrophoresis (DGGE) of a 16S ribosomal DNA PCR product was used to differentiate 32 mycoplasma species of veterinary significance. Twenty-seven (85%) species could be differentiated by DGGE. This method could enable the rapid identification of many mycoplasma species for which there is no specific PCR available and which are currently identified by using culture and serological tests.
doi:10.1128/JCM.41.10.4844-4847.2003
PMCID: PMC254308  PMID: 14532239

Results 1-5 (5)