Search tips
Search criteria

Results 1-25 (36)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Childhood Obesity and Asthma Control in the GALA II and SAGE II Studies 
Rationale: Obesity is associated with increased asthma morbidity, lower drug responsiveness to inhaled corticosteroids, and worse asthma control. However, most prior investigations on obesity and asthma control have not focused on pediatric populations, considered environmental exposures, or included minority children.
Objectives: To examine the association between body mass index categories and asthma control among boys and girls; and whether these associations are modified by age and race/ethnicity.
Methods: Children and adolescents ages 8–19 years (n = 2,174) with asthma were recruited from the Genes-environments and Admixture in Latino Americans (GALA II) Study and the Study of African Americans, Asthma, Genes, and Environments (SAGE II). Ordinal logistic regression was used to estimate odds ratios (OR) and their confidence intervals (95% CI) for worse asthma control.
Measurements and Main Results: In adjusted analyses, boys who were obese had a 33% greater chance of having worse asthma control than their normal-weight counterparts (OR, 1.33; 95% CI, 1.04–1.71). However, for girls this association varied with race and ethnicity (P interaction = 0.008). When compared with their normal-weight counterparts, obese African American girls (OR, 0.65; 95% CI, 0.41–1.05) were more likely to have better controlled asthma, whereas Mexican American girls had a 1.91 (95% CI, 1.12–3.28) greater odds of worse asthma control.
Conclusions: Worse asthma control is uniformly associated with increased body mass index in boys. Among girls, the direction of this association varied with race/ethnicity.
PMCID: PMC3678111  PMID: 23392439
obesity; asthma control; race and ethnicity; age; sex
2.  Genetics of Chronic Rhinosinusitis: State of the Field and Directions Forward 
The etiology of chronic rhinosinusitis (CRS) remains unclear. Study of the genetic susceptibility to CRS may be a valuable strategy to understand the pathogenesis of this burdensome disorder. The purpose of this review is to critically evaluate the current literature regarding the genetics of CRS in a comprehensive fashion. The most promising findings from candidate gene studies include the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR), as well as genes involved in antigen presentation, innate and adaptive immune responses, tissue remodeling, and arachidonic acid metabolism. We also review the few hypothesis-independent genetic studies of CRS (i.e., linkage analysis and pooling-based genome-wide association studies). Interpretation of the current literature is limited by challenges with study design, sparse replication, few functional correlates of associated polymorphisms, and inadequate examination of linkage disequilibrium or expression quantitative trait loci for reported associations. Given the relationship of CRS to other airway disorders with well-characterized genetic components (e.g., asthma), study of the genetics of CRS deserves increased attention and investment, including the organization of large, detailed, and collaborative studies to advance knowledge of the mechanisms that underlie this disorder.
PMCID: PMC3715963  PMID: 23540616
Genetics; genome; variation; chronic rhinosinusitis; nasal polyposis; single nucleotide polymorphism; polymorphism; candidate gene; linkage; genome wide association study; susceptibility; sinusitis
PMCID: PMC3229749  PMID: 22133319
Airway epithelial cell; plasticity; transdifferentiation
4.  Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin 
Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood.
The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells.
Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies.
Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells.
Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways.
PMCID: PMC3387295  PMID: 22633328
Epithelial cells; Mast cells; Virus; Asthma; Th2 cytokine; IL-1; TSLP
5.  Case-control admixture mapping in Latino populations enriches for known asthma-associated genes 
Polymorphisms in more than 100 genes have been associated with asthma susceptibility, yet much of the heritability remains to be explained. Asthma disproportionately affects different racial and ethnic groups in the United States, suggesting that admixture mapping is a useful strategy to identify novel asthma-associated loci.
We sought to identify novel asthma-associated loci in Latino populations using case-control admixture mapping.
We performed genome-wide admixture mapping by comparing levels of local Native American, European, and African ancestry between children with asthma and nonasthmatic control subjects in Puerto Rican and Mexican populations. Within candidate peaks, we performed allelic tests of association, controlling for differences in local ancestry.
Between the 2 populations, we identified a total of 62 admixture mapping peaks at a P value of less than 10−3 that were significantly enriched for previously identified asthma-associated genes (P = .0051). One of the peaks was statistically significant based on 100 permutations in the Mexican sample (6q15); however, it was not significant in Puerto Rican subjects. Another peak was identified at nominal significance in both populations (8q12); however, the association was observed with different ancestries.
Case-control admixture mapping is a promising strategy for identifying novel asthma-associated loci in Latino populations and implicates genetic variation at 6q15 and 8q12 regions with asthma susceptibility. This approach might be useful for identifying regions that contribute to both shared and population-specific differences in asthma susceptibility.
PMCID: PMC3593143  PMID: 22502797
Admixture mapping; genome-wide association study; asthma; Latino populations; population-specific risk factors
6.  Fast and accurate inference of local ancestry in Latino populations 
Bioinformatics  2012;28(10):1359-1367.
Motivation: It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate and unbiased estimation of the ancestry at every genomic locus in recently admixed populations. Although various methods have been proposed and shown to be extremely accurate in two-way admixtures (e.g. African Americans), only a few approaches have been proposed and thoroughly benchmarked on multi-way admixtures (e.g. Latino populations of the Americas).
Results: To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3348558  PMID: 22495753
7.  Ethnic Variability in Persistent Asthma After In Utero Tobacco Exposure 
Pediatrics  2011;128(3):e623-e630.
The effects of in utero tobacco smoke exposure on childhood respiratory health have been investigated, and outcomes have been inconsistent.
To determine if in utero tobacco smoke exposure is associated with childhood persistent asthma in Mexican, Puerto Rican, and black children.
There were 295 Mexican, Puerto Rican, and black asthmatic children, aged 8 to 16 years, who underwent spirometry, and clinical data were collected from the parents during a standardized interview. The effect of in utero tobacco smoke exposure on the development of persistent asthma and related clinical outcomes was evaluated by logistic regression.
Children with persistent asthma had a higher odds of exposure to in utero tobacco smoke, but not current tobacco smoke, than did children with intermittent asthma (odds ratio [OR]: 3.57; P = .029). Tobacco smoke exposure from parents in the first 2 years of life did not alter this association. Furthermore, there were higher odds of in utero tobacco smoke exposure in children experiencing nocturnal symptoms (OR: 2.77; P = .048), daily asthma symptoms (OR: 2.73; P = .046), and emergency department visits (OR: 3.85; P = .015) within the year.
Exposure to tobacco smoke in utero was significantly associated with persistent asthma among Mexican, Puerto Rican, and black children compared with those with intermittent asthma. These results suggest that smoking cessation during pregnancy may lead to a decrease in the incidence of persistent asthma in these populations.
PMCID: PMC3164096  PMID: 21859918
asthma; tobacco; Latino; African American; pregnancy
8.  Regulation and Function of the IL-1 Family Cytokine IL-1F9 in Human Bronchial Epithelial Cells 
The IL-1 family of cytokines, which now includes 11 members, is well known to participate in inflammation. Although the most recently recognized IL-1 family cytokines (IL-1F5–11) have been shown to be expressed in airway epithelial cells, the regulation of their expression and function in the epithelium has not been extensively studied. We investigated the regulation of IL-1F5–11 in primary normal human bronchial epithelial cells. Messenger (m)RNAs for IL-1F6 and IL-1F9, but not IL-1F5, IL-1F8 or IL-1F10, were significantly up-regulated by TNF, IL-1β, IL-17 and the Toll-like receptor (TLR)3 ligand double-stranded (ds)RNA. mRNAs for IL-1F7 and IL-1F11 (IL-33) were weakly up-regulated by some of the cytokines tested. Notably, mRNAs for IL-1F6 and IL-1F9 were synergistically enhanced by the combination of TNF/IL-17 or dsRNA/IL-17. IL-1F9 protein was detected in the supernatant following stimulation with dsRNA or a combination of dsRNA and IL-17. IL-1F6 protein was detected in the cell lysate but was not detected in the supernatant. We screened for the receptor for IL-1F9 and found that lung fibroblasts expressed this receptor. We found that IL-1F9 activated mitogen-activated protein kinases and the transcription factor NF-κB in primary normal human lung fibroblasts. IL-1F9 also stimulated the expression of the neutrophil chemokines IL-8 and CXCL3 and the Th17 chemokine CCL20 in lung fibroblasts. These results suggest that epithelial activation by TLR3 (e.g., by respiratory viral infection) and exposure to cytokines from Th17 cells (IL-17) and inflammatory cells (TNF) may amplify neutrophilic inflammation in the airway via induction of IL-1F9 and activation of fibroblasts.
PMCID: PMC3145067  PMID: 20870894
human bronchial epithelial cells; IL-1F9; human lung fibroblasts; Toll-like receptor; IL-17
9.  Viral diversity in asthma 
Asthma exacerbations are precipitated primarily by respiratory virus infection and frequently require immediate medical intervention. Studies of childhood and adult asthma have implicated a wide variety of respiratory viruses in exacerbations. By focusing on both RNA and DNA respiratory viruses and some newly identified viruses, this review illustrates the diversity and highlights some of the uncertainties that exist in our understanding of virus-related asthma exacerbations.
PMCID: PMC2967440  PMID: 21029933
asthma; exacerbation; respiratory; newly identified virus
10.  Viral Respiratory Infections and Asthma: the Course Ahead 
Inquiries into the relationships between viral respiratory illnesses and the inception and exacerbation of asthma are being facilitated by recent advances in research approaches and technology. In this article, we identify important knowledge gaps and future research questions, and we discuss how new investigational tools, including improved respiratory virus detection techniques, will permit current and future researchers to define these relationships and the host, virus, developmental, and environmental mechanisms that regulate them. A better understanding of these processes should facilitate the development of improved strategies for the prevention and treatment of virus-induced wheezing illnesses and asthma exacerbations and, possibly, the ultimate goal of discovering effective approaches for the primary prevention of asthma.
PMCID: PMC2880817  PMID: 20513518
viral respiratory infections; asthma; wheezing; asthma onset; asthma exacerbations; respiratory viruses; rhinovirus; respiratory syncytial virus; allergy
11.  Genetic ancestry modifies pharmacogenetic gene–gene interaction for asthma 
Pharmacogenetics and genomics  2009;19(7):489-496.
A recent admixture mapping analysis identified interleukin 6 (IL6) and IL6 receptor (IL6R) as candidate genes for inflammatory diseases. In the airways during allergic inflammation, IL6 signaling controls the production of proinflammatory and anti-inflammatory factors. In addition, albuterol, a commonly prescribed asthma therapy, has been shown to influence IL6 gene expression. Therefore, we reasoned that interactions between the IL6 and IL6R genes might be associated with bronchodilator drug responsiveness to albuterol in asthmatic patients.
Four functional IL6 single nucleotide polymorphisms (SNPs) and a nonsynonymous IL6R SNP were genotyped in 700 Mexican and Puerto Rican asthma families and in 443 African-American asthma cases and controls. Both family-based association tests and linear regression models were used to assess the association between individual SNPs and haplotypes with bronchodilator response. Gene–gene interactions were tested by using multiple linear regression analyses.
No single SNP was consistently associated with drug response in all the three populations. However, on the gene level, we found a consistent IL6 and IL6R pharmacogenetic interaction in the three populations. This pharmacogenetic gene–gene interaction was contextual and dependent upon ancestry (racial background). This interaction resulted in higher drug response to albuterol in Latinos, but lower drug response in African-Americans. Herein, we show that there is an effect modification by ancestry on bronchodilator responsiveness to albuterol.
Genetic variants in the IL6 and IL6R genes act synergistically to modify the bronchodilator drug responsiveness in asthma and this pharmacogenetic interaction is modified by the genetic ancestry.
PMCID: PMC2768127  PMID: 19503017
asthma genetics; African-Americans; ancestry; effect modification; gene–gene interaction; IL6; IL6 receptor; latinos
12.  Epithelium, Inflammation, and Immunity in the Upper Airways of Humans 
The purpose of this review is to discuss recent findings made during studies of the upper airways and sinuses of people with chronic rhinosinusitis (CRS) in the context of the literature. CRS is a chronic inflammatory disorder affecting nearly 30 million Americans and is generally resistant to therapy with antibiotics and glucocorticoids (Meltzer EO and coworkers, J Allergy Clin Immunol 2004;114:155–212). We have formed a collaboration that consists of otolaryngologists, allergists, and basic scientists to address the underlying immunologic and inflammatory processes that are occurring in, and possibly responsible for, this disease. The main emphasis of our work has been to focus on the roles that epithelium, in the sinuses and upper airways, plays as both a mediator and regulator of immune and inflammatory responses. It is not our intention here to provide a comprehensive review of the literature in this area, but we will try to put our work in the context of the findings of others (Kato A and Schleimer RP, Curr Opin Immunol 2007;19:711–720; Schleimer RP and coworkers, J Allergy Clin Immunol 2007;120:1279–1284). In particular, we discuss the evidence that epithelial cell responses are altered in CRS, including those relevant to regulation of dendritic cells, T cells, B cells, and barrier function.
PMCID: PMC2677404  PMID: 19387032
chronic rhinosinusitis; inflammation; epithelium; immunology
13.  Epithelium: At the interface of innate and adaptive immune responses 
Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways.
PMCID: PMC2810155  PMID: 17949801
Epithelium; innate immunity; adaptive immunity; airway inflammation; immune regulation
14.  An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity 
Human Molecular Genetics  2008;17(17):2681-2690.
A highly heritable and reproducible measure of asthma severity is baseline pulmonary function. Pulmonary function is largely determined by airway smooth muscle (ASM) tone and contractility. The large conductance, voltage and calcium-activated potassium (BK) channel negatively regulates smooth muscle tone and contraction in ASM. The modulatory subunit of BK channels, the β1-subunit, is critical for proper activation of BK channels in smooth muscle and has shown sex hormone specific regulation. We hypothesized that KCNMB1 genetic variants in African Americans may underlie differences in bronchial smooth muscle tone and thus pulmonary function, possibly in a sex-specific manner. Through resequencing of the KCNMB1 gene we identified several common variants including a novel African-specific coding polymorphism (C818T, R140W). The C818T SNP and four other KCNMB1 variants were genotyped in two independent groups of African American asthmatics (n = 509) and tested for association with the pulmonary function measure – forced expiratory volume (FEV1) % of predicted value. The 818T allele is associated with a clinically significant decline (−13%) in FEV1 in both cohorts of asthmatics among males but not females (Pcombined = 0.0003). Patch clamp electrophysiology studies of the BK channel expressed with the 140Trp variant of the β1-subunit demonstrated significantly reduced channel openings, predicted by the loss of pulmonary function observed. African American male asthmatics carrying the 818T allele (10% of population) are potentially at risk for greater airway obstruction and increased asthma morbidity. Female asthmatics may be insulated from the deleterious effects of the 818T allele by estrogen-mediated upregulation in BK channel activity.
PMCID: PMC2733805  PMID: 18535015
15.  The Epithelial Anion Transporter Pendrin Is Induced by Allergy and Rhinovirus Infection, Regulates Airway Surface Liquid, and Increases Airway Reactivity and Inflammation in an Asthma Model1 
Asthma exacerbations can be triggered by viral infections or allergens. The Th2 cytokines IL-13 and IL-4 are produced during allergic responses and cause increases in airway epithelial cell mucus, electrolyte and water secretion into the airway surface liquid (ASL). Since ASL dehydration can cause airway inflammation and obstruction, ion transporters could play a role in pathogenesis of asthma exacerbations. We previously reported that expression of the epithelial cell anion transporter pendrin is markedly increased in response to IL-13. Here we show that pendrin plays a role in allergic airway disease and in regulation of ASL thickness. Pendrin-deficient mice had less allergen-induced airway hyperreactivity and inflammation than control mice although other aspects of the Th2 response were preserved. In cultures of IL-13-stimulated mouse tracheal epithelial cells, pendrin deficiency caused an increase in ASL thickness, suggesting that reductions in allergen-induced hyperreactivity and inflammation in pendrin-deficient mice result from improved ASL hydration. To determine whether pendrin might also play a role in virus-induced exacerbations of asthma, we measured pendrin mRNA expression in human subjects with naturally occurring common colds caused by rhinovirus and found a 4.9-fold-increase in mean expression during colds. Studies of cultured human bronchial epithelial cells indicated that this increase could be explained by the combined effects of rhinovirus and IFN-γ, a Th1 cytokine induced during virus infection. We conclude that pendrin regulates ASL thickness and may be an important contributor to asthma exacerbations induced by viral infections or allergens.
PMCID: PMC2491716  PMID: 18641360
Allergy; Inflammation; Infections-Viral; Transgenic/Knockout Mice; Lung
16.  ORMDL3 Gene Is Associated with Asthma in Three Ethnically Diverse Populations 
Rationale: Independent replication of genetic associations in complex diseases, particularly in whole-genome association studies, is critical to confirm the association.
Objectives: A whole-genome association study identified ORMDL3 as a promising candidate gene for asthma in white populations. Here, we attempted to confirm the role of ORMDL3 genetic variants in asthma in three ethnically diverse populations: Mexican, Puerto Rican, and African American.
Methods: We used family-based analyses to test for association between seven candidate single-nucleotide polymorphisms (SNPs) in and around the ORMDL3 gene and asthma and related phenotypes in 701 Puerto Rican and Mexican parent–child trios. We also evaluated these seven SNPs and an additional ORMDL3 SNP in 264 African American subjects with asthma and 176 healthy control subjects.
Measurements and Main Results: We found significant associations between two SNPs within ORMDL3 (rs4378650 and rs12603332) and asthma in Mexicans and African Americans (P = 0.028 and 0.001 for rs4378650 and P = 0.021 and 0.001 for rs12603332, respectively), and a trend toward association in Puerto Ricans (P = 0.076 and 0.080 for SNPs rs4378650 and rs12603332, respectively). These associations became stronger among Mexican and Puerto Rican subjects with asthma with IgE levels greater than 100 IU/ml. We did not find any association between ORMDL3 SNPs and baseline lung function or response to the bronchodilator albuterol.
Conclusions: Our results confirm that the ORMDL3 locus is a risk factor for asthma in ethnically diverse populations. However, inconsistent SNP-level results suggest that further studies will be needed to determine the mechanism by which ORMDL3 predisposes to asthma.
PMCID: PMC2408437  PMID: 18310477
asthma; genetics; ORMDL3; Latinos; African Americans
17.  A Highly Specific Algorithm for Identifying Asthma Cases and Controls for Genome-Wide Association Studies 
Our aim was to identify asthmatic patients as cases, and healthy patients as controls, for genome-wide association studies (GWAS), using readily available data from electronic medical records. For GWAS, high specificity is required to accurately identify genotype-phenotype correlations. We developed two algorithms using a combination of diagnoses, medications, and smoking history. By applying stringent criteria for source and specificity of the data we achieved a 95% positive predictive value and 96% negative predictive value for identification of asthma cases and controls compared against clinician review. We achieved a high specificity but at the loss of approximately 24% of the initial number of potential asthma cases we found. However, by standardizing and applying our algorithm across multiple sites, the high number of cases needed for a GWAS could be achieved.
PMCID: PMC2815460  PMID: 20351906
18.  Predicting worsening asthma control following the common cold 
The asthmatic response to the common cold is highly variable and early characteristics that predict worsening of asthma control following a cold have not been identified.
In this prospective multi-center cohort study of 413 adult subjects with asthma, we used the mini-Asthma Control Questionnaire (mini-ACQ) to quantify changes in asthma control and the Wisconsin Upper Respiratory Symptom Survey-21 (WURSS-21) to measure cold severity. Univariate and multivariable models examined demographic, physiologic, serologic, and cold-related characteristics for their relationship to changes in asthma control following a cold.
We observed a clinically significant worsening of asthma control following a cold (increase in mini-ACQ of 0.69 ± 0.93). Univariate analysis demonstrated season, center location, cold length, and cold severity measurements all associated with a change in asthma control. Multivariable analysis of the covariates available within the first 2 days of cold onset revealed the day 2 and the cumulative sum of the day 1 and 2 WURSS-21 scores were significant predictors for the subsequent changes in asthma control.
In asthmatic subjects the cold severity measured within the first 2 days can be used to predict subsequent changes in asthma control. This information may help clinicians prevent deterioration in asthma control following a cold.
PMCID: PMC2592508  PMID: 18768579
asthma; asthma control; common cold
19.  TLR3- and Th2 Cytokine-Dependent Production of Thymic Stromal Lymphopoietin in Human Airway Epithelial Cells1 
Thymic stromal lymphopoietin (TSLP) is elevated in asthma and triggers dendritic cell-mediated activation of Th2 inflammatory responses. Although TSLP has been shown to be produced mainly by airway epithelial cells, the regulation of epithelial TSLP expression has not been extensively studied. We investigated the expression of TSLP in cytokine- or TLR ligand-treated normal human bronchial epithelial cells (NHBE). The mRNA for TSLP was significantly up-regulated by stimulation with IL-4 (5.5-fold) and IL-13 (5.3-fold), weakly up-regulated by TNF-α, TGF-β, and IFN-β, and not affected by IFN-γ in NHBE. TSLP mRNA was only significantly up-regulated by the TLR3 ligand (dsRNA) among the TLR ligands tested (66.8-fold). TSLP was also induced by in vitro infection with rhinovirus. TSLP protein was detected after stimulation with dsRNA (120 ± 23 pg/ml). The combination of TNF-α and IL-4 produced detectable levels of TSLP protein (40 ± 13 pg/ml). In addition, TSLP was synergistically enhanced by a combination of IL-4 and dsRNA (mRNA; 207-fold, protein; 325 ± 75 pg/ml). The induction of TSLP by dsRNA was dependent upon NF-κB and IFN regulatory factor 3 (IRF-3) signaling via TLR3 as indicated by a study with small interfering RNA. The potent topical glucocorticoid fluticasone propionate significantly suppressed dsRNA-dependent TSLP production in NHBE. These results suggest that the expression of TSLP is induced in airway epithelial cells by stimulation with the TLR3 ligand and Th2 cytokines and that this response is suppressed by glucocorticoid treatment. This implies that respiratory viral infection and the recruitment of Th2 cytokine producing cells may amplify Th2 inflammation via the induction of TSLP in the asthmatic airway.
PMCID: PMC2220044  PMID: 17617600
20.  Dissecting Complex Diseases in Complex Populations 
Asthma is a common but complex respiratory ailment; current data indicate that interaction of genetic and environmental factors lead to its clinical expression. In the United States, asthma prevalence, morbidity, and mortality vary widely among different Latino ethnic groups. The prevalence of asthma is highest in Puerto Ricans, intermediate in Dominicans and Cubans, and lowest in Mexicans and Central Americans. Independently, known socioeconomic, environmental, and genetic differences do not fully account for this observation. One potential explanation is that there may be unique and ethnic-specific gene–environment interactions that can differentially modify risk for asthma in Latino ethnic groups. These gene–environment interactions can be tested using genetic ancestry as a surrogate for genetic risk factors. Latinos are admixed and share varying proportions of African, Native American, and European ancestry. Most Latinos are unaware of their precise ancestry and report their ancestry based on the national origin of their family and their physical appearance. The unavailability of precise ancestry and the genetic complexity among Latinos may complicate asthma research studies in this population. On the other hand, precisely because of this rich mixture of ancestry, Latinos present a unique opportunity to disentangle the clinical, social, environmental, and genetic underpinnings of population differences in asthma prevalence, severity, and bronchodilator drug responsiveness.
PMCID: PMC2647623  PMID: 17607004
genes; environments; Latinos; Hispanics; asthma
21.  Ancestry–Environment Interactions and Asthma Risk among Puerto Ricans 
Background: Puerto Ricans, an admixed population of African, European, and Native American ancestries, have the highest asthma prevalence, morbidity, and mortality rates of any United States' population. Although socioeconomic status (SES) is negatively correlated with asthma incidence in most populations, no such relationship has been identified among Puerto Ricans. We hypothesized that, in this admixed population, the association between SES and asthma may interact with genetic ancestry.
Methods: We analyzed 135 Puerto Rican subjects with asthma and 156 control subjects recruited from six different recruitment centers in Puerto Rico. Individual ancestry for each subject was estimated using 44 ancestry informative markers. SES was assigned using the census tracts' median family income. Analyses of SES were based on the SES of the clinic site from which the subjects were recruited and on a subset of individuals on whom home address–based SES was available.
Results: In the two (independent) analyses, we found a significant interaction between SES, ancestry, and asthma disease status. At lower SES, European ancestry was associated with increased risk of asthma, whereas African ancestry was associated with decreased risk. The opposite was true for their higher SES counterparts.
Conclusions: The observed interaction may help to explain the unique pattern of risk for asthma in Puerto Ricans and the lack of association with SES observed in previous studies when not accounting for varying proportions of ancestry.
PMCID: PMC2648109  PMID: 16973984
Latino; asthma; admixture; gene-environment; socioeconomic status
22.  Asthmatics with exacerbation during acute respiratory illness exhibit unique transcriptional signatures within the nasal mucosa 
Genome Medicine  2014;6(1):1.
Acute respiratory illness is the leading cause of asthma exacerbations yet the mechanisms underlying this association remain unclear. To address the deficiencies in our understanding of the molecular events characterizing acute respiratory illness-induced asthma exacerbations, we undertook a transcriptional profiling study of the nasal mucosa over the course of acute respiratory illness amongst individuals with a history of asthma, allergic rhinitis and no underlying respiratory disease.
Transcriptional profiling experiments were performed using the Agilent Whole Human Genome 4X44K array platform. Time point-based microarray and principal component analyses were conducted to identify and distinguish acute respiratory illness-associated transcriptional profiles over the course of our study. Gene enrichment analysis was conducted to identify biological processes over-represented within each acute respiratory illness-associated profile, and gene expression was subsequently confirmed by quantitative polymerase chain reaction.
We found that acute respiratory illness is characterized by dynamic, time-specific transcriptional profiles whose magnitudes of expression are influenced by underlying respiratory disease and the mucosal repair signature evoked during acute respiratory illness. Most strikingly, we report that people with asthma who experience acute respiratory illness-induced exacerbations are characterized by a reduced but prolonged inflammatory immune response, inadequate activation of mucosal repair, and the expression of a newly described exacerbation-specific transcriptional signature.
Findings from our study represent a significant contribution towards clarifying the complex molecular interactions that typify acute respiratory illness-induced asthma exacerbations.
PMCID: PMC3971347  PMID: 24433494
23.  Further Replication Studies of the EVE Consortium Meta-Analysis Identifies Two Asthma Risk Loci in European Americans 
Genome-wide association studies of asthma have implicated many genetic risk factors, with well-replicated associations at approximately 10 loci that account for only a small proportion of the genetic risk.
We aimed to identify additional asthma risk loci by performing an extensive replication study of the results from the EVE Consortium meta-analysis.
We selected 3186 SNPs for replication based on the p-values from the EVE Consortium meta-analysis. These SNPs were genotyped in ethnically diverse replication samples from nine different studies, totaling to 7202 cases, 6426 controls, and 507 case-parent trios. Association analyses were conducted within each participating study and the resulting test statistics were combined in a meta-analysis.
Two novel associations were replicated in European Americans: rs1061477 in the KLK3 gene on chromosome 19 (combined OR = 1.18; 95% CI 1.10 – 1.25) and rs9570077 (combined OR =1.20 95% CI 1.12–1.29) on chromosome 13q21. We could not replicate any additional associations in the African American or Latino individuals.
This extended replication study identified two additional asthma risk loci in populations of European descent. The absence of additional loci for African Americans and Latino individuals highlights the difficulty in replicating associations in admixed populations.
PMCID: PMC3666859  PMID: 23040885
Asthma; genetic risk factors; meta-analysis; KLK3
24.  Genetic variation in BAFF and asthma exacerbations among African American individuals 
Capsule Summary
A BAFF polymorphism is associated with asthma exacerbations and serum BAFF levels. BAFF expression in vivo increases in natural rhinovirus infection. BAFF may play a role in airway antiviral immunity and impact asthma exacerbation rates.
PMCID: PMC3520130  PMID: 22728080
BAFF; B-cell activating factor; tumor necrosis factor ligand superfamily; asthma; asthma exacerbations; genetics
25.  Genome-wide Ancestry Association Testing Identifies a Common European Variant on 6q14.1 as a Risk Factor for Asthma in African Americans 
Genetic variants that contribute to asthma susceptibility may be present at varying frequencies in different populations, which is an important consideration and advantage for performing genetic association studies in admixed populations.
To identify asthma-associated loci in African Americans.
We compared local African and European ancestry estimated from dense single nucleotide polymorphism (SNP) genotype data in African American adults with asthma and non-asthmatic controls. Allelic tests of association were performed within the candidate regions identified, correcting for local European admixture.
We identified a significant ancestry association peak on chromosomes 6q. Allelic tests for association within this region identified a SNP (rs1361549) on 6q14.1 that was associated with asthma exclusively in African Americans with local European admixture (OR=2.2). The risk allele is common in Europe (42% in the HapMap CEU) but absent in West Africa (0% in the HapMap YRI), suggesting the allele is present in African Americans due to recent European admixture. We replicated our findings in Puerto Ricans and similarly found that the signal of association is largely specific to individuals who are heterozygous for African and non-African ancestry at 6q14.1. However, we found no evidence for association in European Americans or in Puerto Ricans in the absence of local African ancestry, suggesting that the association with asthma at rs1361549 is due to an environmental or genetic interaction.
We identified a novel asthma-associated locus that is relevant to admixed populations with African ancestry, and highlight the importance of considering local ancestry in genetic association studies of admixed populations.
PMCID: PMC3503456  PMID: 22607992
asthma; population structure; genome-wide association study; admixture mapping; ancestry association testing; admixed populations; African Americans; Puerto Ricans

Results 1-25 (36)