PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (112)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Bisphenol A affects androgen receptor function via multiple mechanisms 
Chemico-biological interactions  2013;203(3):556-564.
Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.
doi:10.1016/j.cbi.2013.03.013
PMCID: PMC3722857  PMID: 23562765
Bisphenol A and related compounds; androgen receptor; qHTS; transfection; imaging analysis
2.  Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects 
Nucleic Acids Research  2014;42(10):6591-6602.
Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUGexp). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUGexp binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1–(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUGexp RNA in nuclear foci, owing to reduced turnover of the CUGexp transcript. By comparison, the monomer did not induce CUGexp accumulation in cells and was more effective at rescuing a CUGexp-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.
doi:10.1093/nar/gku275
PMCID: PMC4041448  PMID: 24799433
3.  Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors 
Retinoic acid-related orphan receptor RORγt plays a pivotal role in the differentiation of TH17 cells. Antagonizing RORγt transcriptional activity is a potential means to treat TH17-related autoimmune diseases. Herein, we describe the identification of a series of diphenylpropanamides as novel and selective RORγ antagonists. Diphenylpropanamide 4n inhibited transcriptional activity of RORγt, but not RORα, in cells. In addition, it suppressed human TH17 cell differentiation at sub-micromolar concentrations.
doi:10.1021/ml300286h
PMCID: PMC3770298  PMID: 24040486
Retinoic acid-related orphan receptor; RORγ antagonist; diphenylpropanamide; TH17-related autoimmune diseases
4.  Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors 
Retinoic acid-related orphan receptor RORγt plays a pivotal role in the differentiation of TH17 cells. Antagonizing RORγt transcriptional activity is a potential means to treat TH17-related autoimmune diseases. Herein, we describe the identification of a series of diphenylpropanamides as novel and selective RORγ antagonists. Diphenylpropanamide 4n inhibited the transcriptional activity of RORγt, but not RORα, in cells. In addition, it suppressed human TH17 cell differentiation at submicromolar concentrations.
doi:10.1021/ml300286h
PMCID: PMC3770298  PMID: 24040486
retinoic acid-related orphan receptor; RORγ antagonist; diphenylpropanamide; TH17-related autoimmune diseases
5.  A Novel Brain Penetrant NPS Receptor Antagonist, NCGC00185684, Blocks Alcohol-Induced ERK-Phosphorylation in the Central Amygdala and Decreases Operant Alcohol Self-Administration in Rats 
The Journal of Neuroscience  2013;33(24):10132-10142.
The Neuropeptide S receptor, a Gs/Gq-coupled GPCR expressed in brain regions involved in mediating drug reward, has recently emerged as a candidate therapeutic target in addictive disorders. Here, we describe the in vitro and in vivo pharmacology of a novel, selective and brain penetrant NPSR antagonist with nanomolar affinity for the NPSR, NCGC00185684. In vitro, NCGC00185684 shows biased antagonist properties, and preferentially blocks ERK-phosphorylation over intracellular cAMP or calcium responses to NPS. In vivo, systemic NCGC00185684 blocks alcohol-induced ERK-phosphorylation in the rat central amygdala, a region involved in regulation of alcohol intake. NCGC00185684 also decreases operant alcohol self-administration, and lowers motivation for alcohol reward as measured using progressive ratio responding. These effects are behaviorally specific, in that they are observed at doses that do not influence locomotor activity or reinstatement responding following extinction. Together, these data provide an initial validation of the NPSR as a therapeutic target in alcoholism.
doi:10.1523/JNEUROSCI.4742-12.2013
PMCID: PMC3682378  PMID: 23761908
6.  Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules 
Molecular informatics  2012;31(11-12):783-792.
The human cytochrome P450 (CYP) enzyme family is involved in the biotransformation of many xenobiotics. As part of the U.S. Tox21 Phase I effort, we profiled the CYP activity of approximately three thousand compounds, primarily those of environmental concern, against human CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 isoforms in a quantitative high throughput screening (qHTS) format. In order to evaluate the extent to which computational models built from a drug-like library screened in these five CYP assays under the same conditions can accurately predict the outcome of an environmental compound library, five support vector machines (SVM) models built from over 17,000 drug-like compounds were challenged to predict the CYP activities of the Tox21 compound collection. Although a large fraction of the test compounds fall outside of the applicability domain (AD) of the models, as measured by k-nearest neighbor (k-NN) similarities, the predictions were largely accurate for CYP1A2, CYP2C9, and CYP3A4 ioszymes with area under the receiver operator characteristic curves (AUC-ROC) ranging between 0.82 and 0.84. The lower predictive power of the CYP2C19 model (AUC-ROC = 0.76) is caused by experimental errors and that of the CYP2D6 model (AUC-ROC = 0.76) can be rescued by rebalancing the training data. Our results demonstrate that decomposing molecules into atom types enhanced the coverage of the AD and that computational models built from drug-like molecules can be used to predict the ability of non-drug like compounds to interact with these CYPs.
doi:10.1002/minf.201200065
PMCID: PMC3583379  PMID: 23459712
Human CYPs; QSAR models; Predictive Capacity; SVM; Predictive Toxicology
7.  Correction: Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(11):10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6.
doi:10.1371/annotation/e2536fcb-3ab3-44a0-8eab-91aaeb8e49b6
PMCID: PMC3815351
8.  The NCGC Pharmaceutical Collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics 
Science translational medicine  2011;3(80):80ps16.
Small-molecule compounds approved for use as drugs may be “repurposed” for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening.
doi:10.1126/scitranslmed.3001862
PMCID: PMC3098042  PMID: 21525397
9.  Identification of Therapeutic Candidates for Chronic Lymphocytic Leukemia from a Library of Approved Drugs 
PLoS ONE  2013;8(9):e75252.
Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. In this study, we used a luminescent cell viability assay based on ATP levels to find compounds that were potent and efficacious in killing CLL cells. We employed an in-house process of quantitative high throughput screening (qHTS) to assess 8 concentrations of each member of a 2,816 compound library (including FDA-approved drugs and those known to be bio-active from commercial suppliers). Using qHTS we generated potency values on each compound in lymphocytes donated from each of six individuals with CLL and five unaffected individuals. We found 102 compounds efficacious against cells from all six individuals with CLL (“consensus” drugs) with five of these showing low or no activity on lymphocytes from a majority of normal donors, suggesting some degree of specificity for the leukemic cells. To our knowledge, this is the first study to screen a drug library against primary CLL cells to identify candidate agents for anti-cancer therapy. The results presented here offer possibilities for the development of novel drug candidates for therapeutic uses to treat CLL and other diseases.
doi:10.1371/journal.pone.0075252
PMCID: PMC3779154  PMID: 24073257
10.  A Structure Based Model for the Prediction of Phospholipidosis Induction Potential of Small Molecules 
Drug-induced phospholipidosis (PLD), characterized by an intracellular accumulation of phospholipids and formation of concentric lamellar bodies, has raised concerns in the drug discovery community, due to its potential adverse effects. To evaluate the PLD induction potential, 4,161 non-redundant drug-like molecules from the National Institutes of Health Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC), the Library of Pharmacologically Active Compounds (LOPAC) and the Tocris Biosciences collection were screened in a quantitative high-throughput screening (qHTS) format. The potential of drug-lipid complex formation can be linked directly to the structures of drug molecules, and many PLD inducing drugs were found to share common structural features. Support vector machine (SVM) models were constructed by using customized atom types or Molecular Operating Environment (MOE) 2D descriptors as structural descriptors. Either the compounds from LOPAC or randomly selected from the entire dataset were used as the training set. The impact of training data with biased structural features and the impact of molecule descriptors emphasizing whole-molecule properties or detailed functional groups at the atom level on model performance were analyzed and discussed. Rebalancing strategies were applied to improve the predictive power of the SVM models. Using the under-sampling method, the consensus model using one third of the compounds randomly selected from the data set as the training set achieved high accuracy of 0.90 in predicting the remaining two thirds of the compounds constituting the test set, as measured by the area under the receiver operator characteristic curve (AUC-ROC).
doi:10.1021/ci3001875
PMCID: PMC3484221  PMID: 22725677
phospholipidosis; computation toxicology; QSAR; SVM; qHTS
11.  Improving the Human Hazard Characterization of Chemicals: A Tox21 Update 
Environmental Health Perspectives  2013;121(7):756-765.
Background: In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency’s National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on “high throughput screening, toxicity pathway profiling, and biological interpretation of findings.” In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21.
Objectives: The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays.
Discussion: Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems.
Conclusion: Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology.
doi:10.1289/ehp.1205784
PMCID: PMC3701992  PMID: 23603828
chemical hazard characterization; computational biology; high throughput testing; in vitro models; systems biology; Tox21
12.  Synthesis and Evaluation of Quinazolin-4-ones as Hypoxia-inducible Factor-1α Inhibitors 
Quinazolin-4-one 1 was identified as an inhibitor of the HIF-1α transcriptional factor from a high-throughput screen. HIF-1α up-regulation is common in many cancer cells. In this paper, we describe an efficient one-pot sequential reaction for the synthesis of quinazolin-4-one 1 analogues. The structure-activity relationship (SAR) study led to the 5-fold more potent analogue, 16.
doi:10.1016/j.bmcl.2011.07.043
PMCID: PMC3681418  PMID: 21831635
hypoxia-inducible factor-1α; quinazolin-4-ones; parallel synthesis
13.  Identification of repurposed small molecule drugs for chordoma therapy 
Cancer Biology & Therapy  2013;14(7):638-647.
Chordoma is a rare, slow growing malignant tumor arising from remnants of the fetal notochord. Surgery is the first choice for chordoma treatment, followed by radiotherapy, although postoperative complications remain significant. Recurrence of the disease occurs frequently due to the anatomy of the tumor location and violation of the tumor margins at the initial surgery. Currently, there are no effective drugs available for patients with chordoma. Due to the rarity of the disease, there is limited opportunity to test agents in clinical trials and no concerted effort to develop agents for chordoma in the pharmaceutical industry. To rapidly and efficiently identify small molecules that inhibit chordoma cell growth, we screened the NCGC Pharmaceutical Collection (NPC) containing approximately 2800 clinically approved and investigational drugs at 15 different concentrations in chordoma cell lines, U-CH1 and U-CH2. We identified a group of drugs including bortezomib, 17-AAG, digitoxin, staurosporine, digoxin, rubitecan, and trimetrexate that inhibited chordoma cell growth, with potencies from 10 to 370 nM in U-CH1 cells, but less potently in U-CH2 cells. Most of these drugs also induced caspase 3/7 activity with a similar rank order as the cytotoxic effect on U-CH1 cells. Cantharidin, digoxin, digitoxin, staurosporine, and bortezomib showed similar inhibitory effect on cell lines and 3 primary chordoma cell cultures. The combination treatment of bortezomib with topoisomerase I and II inhibitors increased the therapeutic potency in U-CH2 and patient-derived primary cultures. Our results provide information useful for repurposing currently approved drugs for chordoma and potential approach of combination therapy.
doi:10.4161/cbt.24596
PMCID: PMC3742493  PMID: 23792643
chordoma; NCGC Pharmaceutical Collection; cell viability; caspase 3/7; U-CH1; U-CH2; qHTS
14.  Paradigm Shift in Toxicity Testing and Modeling 
The AAPS Journal  2012;14(3):473-480.
The limitations of traditional toxicity testing characterized by high-cost animal models with low-throughput readouts, inconsistent responses, ethical issues, and extrapolability to humans call for alternative strategies for chemical risk assessment. A new strategy using in vitro human cell-based assays has been designed to identify key toxicity pathways and molecular mechanisms leading to the prediction of an in vivo response. The emergence of quantitative high-throughput screening (qHTS) technology has proved to be an efficient way to decompose complex toxicological end points to specific pathways of targeted organs. In addition, qHTS has made a significant impact on computational toxicology in two aspects. First, the ease of mechanism of action identification brought about by in vitro assays has enhanced the simplicity and effectiveness of machine learning, and second, the high-throughput nature and high reproducibility of qHTS have greatly improved the data quality and increased the quantity of training datasets available for predictive model construction. In this review, the benefits of qHTS routinely used in the US Tox21 program will be highlighted. Quantitative structure–activity relationships models built on traditional in vivo data and new qHTS data will be compared and analyzed. In conjunction with the transition from the pilot phase to the production phase of the Tox21 program, more qHTS data will be made available that will enrich the data pool for predictive toxicology. It is perceivable that new in silico toxicity models based on high-quality qHTS data will achieve unprecedented reliability and robustness, thus becoming a valuable tool for risk assessment and drug discovery.
doi:10.1208/s12248-012-9358-1
PMCID: PMC3385826  PMID: 22528508
computational toxicology; qHTS; risk assessment; Tox21
15.  Quantitative High-Throughput Screening for Chemical Toxicity in a Population-Based In Vitro Model 
Toxicological Sciences  2012;126(2):578-588.
A shift in toxicity testing from in vivo to in vitro may efficiently prioritize compounds, reveal new mechanisms, and enable predictive modeling. Quantitative high-throughput screening (qHTS) is a major source of data for computational toxicology, and our goal in this study was to aid in the development of predictive in vitro models of chemical-induced toxicity, anchored on interindividual genetic variability. Eighty-one human lymphoblast cell lines from 27 Centre d’Etude du Polymorphisme Humain trios were exposed to 240 chemical substances (12 concentrations, 0.26nM–46.0μM) and evaluated for cytotoxicity and apoptosis. qHTS screening in the genetically defined population produced robust and reproducible results, which allowed for cross-compound, cross-assay, and cross-individual comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited interindividual differences in cytotoxicity. Specifically, the qHTS in a population-based human in vitro model system has several unique aspects that are of utility for toxicity testing, chemical prioritization, and high-throughput risk assessment. First, standardized and high-quality concentration-response profiling, with reproducibility confirmed by comparison with previous experiments, enables prioritization of chemicals for variability in interindividual range in cytotoxicity. Second, genome-wide association analysis of cytotoxicity phenotypes allows exploration of the potential genetic determinants of interindividual variability in toxicity. Furthermore, highly significant associations identified through the analysis of population-level correlations between basal gene expression variability and chemical-induced toxicity suggest plausible mode of action hypotheses for follow-up analyses. We conclude that as the improved resolution of genetic profiling can now be matched with high-quality in vitro screening data, the evaluation of the toxicity pathways and the effects of genetic diversity are now feasible through the use of human lymphoblast cell lines.
doi:10.1093/toxsci/kfs023
PMCID: PMC3307611  PMID: 22268004
chemical cytotoxicity; apoptosis; HapMap; lymphoblasts; qHTS
16.  Evaluation of Cholesterol Reduction Activity of Methyl-β-cyclodextrin Using Differentiated Human Neurons and Astrocytes 
Journal of biomolecular screening  2012;17(9):1243-1251.
Recent advances in stem cell technology have enabled large scale production of human cells such as cardiomyocytes, hepatocytes and neurons for evaluation of pharmacological effect and toxicity of drug candidates. The assessment of compound efficacy and toxicity using human cells should lower the high clinical attrition rates of drug candidates by reducing the impact of species differences on drug efficacy and toxicity from animal studies. Methyl-β-cyclodextrin (MBCD) has shown to reduce lysosomal cholesterol accumulation in skin fibroblasts derived from patients with Niemann Pick type C disease and in the NPC1−/− mouse model. However, the compound has never been tested in human differentiated neurons. We have determined the cholesterol reduction effect of MBCD in neurons differentiated from human neural stem cells and commercially available astrocytes. The use of NSCs for producing differentiated neurons in large quantities can significantly reduce the production time and enhance the reproducibility of screening results. The EC50 values of MBCD on cholesterol reduction in human neurons and astrocytes were 66.9 and 110.7 µM, respectively. The results indicate that human neurons differentiated from the NSCs and human astrocytes are useful tools for evaluating pharmacological activity and toxicity of drug candidates to predict their clinical efficacy.
doi:10.1177/1087057112456877
PMCID: PMC3530257  PMID: 22923786
induced pluripotent stem cells; neural stem cells; human neurons; astrocytes; skin fibroblasts; methyl-β-cyclodextrin
18.  Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria 
ACS Medicinal Chemistry Letters  2011;3(2):112-117.
Here, we describe the discovery of a novel antimalarial agent using phenotypic screening of Plasmodium falciparum asexual blood-stage parasites. Screening a novel compound collection created using diversity-oriented synthesis (DOS) led to the initial hit. Structure–activity relationships guided the synthesis of compounds having improved potency and water solubility, yielding a subnanomolar inhibitor of parasite asexual blood-stage growth. Optimized compound 27 has an excellent off-target activity profile in erythrocyte lysis and HepG2 assays and is stable in human plasma. This compound is available via the molecular libraries probe production centers network (MLPCN) and is designated ML238.
doi:10.1021/ml200244k
PMCID: PMC3276110  PMID: 22328964
diversity-oriented synthesis; malaria; macrocycle; high-throughput screening; phenotypic screen; infectious disease; molecular libraries probe production centers; stereochemical structure−activity relationships
19.  Two high throughput screening assays for Aberrant RNA-protein interactions in Myotonic Dystrophy Type-1 
Analytical and Bioanalytical Chemistry  2012;402(5):1889-1898.
Myotonic dystrophy type-1 (DM1), the most prevalent form of adult muscular dystrophy, is caused by expansion of a CTG repeat in the 3′ untranslated region of the DM protein kinase (DMPK) gene. The pathogenic effects of the CTG expansion arise from the deleterious effects of the mutant transcript. RNA with expanded CUG tracts alters the activities of several RNA binding proteins, including muscleblind-like 1 (MBNL1). MBNL1 becomes sequestered in nuclear foci in complex with the expanded CUG repeat RNA. The resulting loss of MBNL1 activity causes mis-regulated alternative splicing of multiple genes, leading to symptoms of DM1. The binding interaction between MBNL1 and mutant RNA could be a key step in the pathogenesis of DM1 and serves as a potential target for therapeutic intervention. We have developed two high throughput screen (HTS) suitable assays using both homogenous time-resolved fluorescence energy transfer (HTRF) and AlphaScreen technologies to detect the binding of a C-terminally His-tagged MBNL1 and a biotinylated (CUG)12 RNA. These assays are homogenous and successfully miniaturized to 1536-well plate format. Both assays were validated and show robust signal-to-basal ratios and Z’ factors.
doi:10.1007/s00216-011-5604-0
PMCID: PMC3280409  PMID: 22218462
Myotonic dystrophy type 1; DM1; Muscleblind-like 1; MBNL1
20.  A Class of Tricyclic Compounds Blocking Malaria Parasite Oocyst Development and Transmission 
Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.
doi:10.1128/AAC.00920-12
PMCID: PMC3535893  PMID: 23129054
21.  High-Throughput Multiplexed Quantitation of Protein Aggregation and Cytotoxicity in a Huntington’s Disease Model 
A hallmark of Huntington’s disease is the presence of a large polyglutamine expansion in the first exon of the Huntingtin protein and the propensity of protein aggregation by the mutant proteins. Aberrant protein aggregation also occurs in other polyglutamine expansion disorders, as well as in other neurodegenerative diseases including Parkinson’s, Alzheimer’s, and prion diseases. However, the pathophysiological role of these aggregates in the cell death that characterizes the diseases remains unclear. Identification of small molecule probes that modulate protein aggregation and cytotoxicity caused by aggregated proteins may greatly facilitate the studies on pathogenesis of these diseases and potentially lead to development of new therapies. Based on a detergent insoluble property of the Huntingtin protein aggregates, we have developed a homogenous assay to rapidly quantitate the levels of protein aggregates in a cellular model of Huntington’s disease. The protein aggregation assay has also been multiplexed with a protease release assay for the measurement of cytotoxicity resulting from aggregated proteins in the same cells. Through a testing screen of a compound library, we have demonstrated that this multiplexed cytotoxicity and protein aggregation assay has ability to identify active compounds that prevent cell death and/or modulate protein aggregation in cells of the Huntington’s disease model. Therefore, this multiplexed screening approach is also useful for development of high-throughput screening assays for other neurodegenerative diseases involving protein aggregation.
doi:10.2174/1875397301206010079
PMCID: PMC3551243  PMID: 23346268
Huntington’s disease; protein aggregation; high-throughput screen; polyglutamine expansion; multiplex assay.
22.  Predictive Models for Cytochrome P450 Isozymes Based on Quantitative High Throughput Screening Data 
The human cytochrome P450 (CYP450) isozymes are the most important enzymes in the body to metabolize many endogenous and exogenous substances including environmental toxins and therapeutic drugs. Any unnecessary interactions between a small molecule and CYP450 isozymes may raise a potential to disarm the integrity of the protection. Accurately predicting the potential interactions between a small molecule and CYP450 isozymes is highly desirable for assessing the metabolic stability and toxicity of the molecule. The National Institutes of Health Chemical Genomics Center (NCGC) has screened a collection of over seventeen thousand compounds against the five major isozymes of CYP450 (1A2, 2C9, 2C19, 2D6 and 3A4) in a quantitative high throughput screening (qHTS) format. In this study, we developed support vector classification (SVC) models for these five isozymes using a set of customized generic atom types. The CYP450 datasets were randomly split into equal-sized training and test sets. The optimized SVC models exhibited high predictive power against the test sets for all five CYP450 isozymes with accuracies of 0.93, 0.89, 0.89, 0.85 and 0.87 for 1A2, 2C9, 2C19, 2D6 and 3A4, respectively, as measured by the area under the receiver operating characteristic (ROC) curves. The important atom types and features extracted from the five models are consistent with the structural preferences for different CYP450 substrates reported in the literature. We also identified novel features with significant discerning power to separate CYP450 actives from inactives. These models can be useful in prioritizing compounds in a drug discovery pipeline, or recognizing the toxic potential of environmental chemicals.
doi:10.1021/ci200311w
PMCID: PMC3200453  PMID: 21905670
23.  The Synthesis and Evaluation of Dihydroquinazolin-4-ones and Quinazolin-4-ones as Thyroid Stimulating Hormone Receptor Agonists 
MedChemComm  2011;2(10):1016-1020.
We herein describe the rapid synthesis of a diverse set of dihydroquinazolin-4-ones and quinazolin-4-ones, their biological evaluation as thyroid stimulating hormone receptor (TSHR) agonists, and SAR analysis. Among the compounds screened, 8b was 60-fold more potent than the hit compound 1a, which was identified from a high throughput screen of over 73,000 compounds.
doi:10.1039/C1MD00145K
PMCID: PMC3293179  PMID: 22408719
24.  Discovery, Synthesis and Biological Evaluation of Novel SMN Protein Modulators 
Journal of medicinal chemistry  2011;54(18):6215-6233.
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder affecting the expression or function of survival motor neuron protein (SMN) due to the homozygous deletion or rare point mutations in the survival motor neuron gene 1 (SMN1). The human genome includes a second nearly identical gene called SMN2 that is retained in SMA. SMN2 transcripts undergo alternative splicing with reduced levels of SMN. Up-regulation of SMN2 expression, modification of its splicing, or inhibition of proteolysis of the truncated protein derived from SMN2 have been discussed as potential therapeutic strategies for SMA. In this manuscript, we detail the discovery of a series of arylpiperidines as novel modulators of SMN protein. Systematic hit-to-lead efforts significantly improved potency and efficacy of the series in the primary and orthogonal assays. Structure property relationships including microsomal stability, cell permeability and in vivo pharmacokinetics (PK) studies were also investigated. We anticipate that a lead candidate chosen from this series may serve as a useful probe for exploring the therapeutic benefits of SMN protein up-regulation in SMA animal models, and a starting point for clinical development.
doi:10.1021/jm200497t
PMCID: PMC3174349  PMID: 21819082
25.  Four clinically utilized drugs were identified and validated for treatment of adrenocortical cancer using quantitative high-throughput screening 
Background
Drug repurposing for cancer treatment is an emerging approach to discover clinically approved drugs that demonstrate antineoplastic effect. The effective therapeutics for patients with advanced adrenocortical carcinoma(ACC) are greatly needed. The objective of this study was to identify and validate drugs with antineoplastic effect in ACC cells using a novel quantitative high-throughput drug screening (qHTS) technique.
Methods
A quantitative high-throughput proliferation assay of 2,816 clinically approved drugs was performed in the NCI-H295R ACC cell line. We validated the antiproliferative effect of candidate compounds in NCI-H295R cells. Further validation was performed in 3-dimensional multicellular aggregates (MCA) of NCI-H295R and SW-13 cell lines.
Results
We identified 79 active compounds against ACC cells; 21 had an efficacy ≥60% and IC50 <1 μM. The top drug categories enriched were cardiotonic, antiseptic, and antineoplastic. We selected Bortezomib, ouabain, Methotrexate, pyrimethamine for validation. All had an antiproliferative effect in monolayer culture of NCI-H295R cells at clinical achievable serum level. Bortezomib and ouabain inhibited growth of MCA in both cell lines at a low concentration (10 fold below IC50). Methotrexate inhibited growth and caused disintegration of MCA in both cell lines at concentrations well below the maximum serum level (10 to 100 fold of IC50). Pyrimethamine caused growth inhibition in both cell lines at 10 fold of IC50 concentration.
Conclusions
qHTS of previously approved compounds is an effective and efficient method to identify anticancer drugs for a rare cancer such as ACC. We have validated the antineoplastic effect of Bortezomib, ouabain, Methotrexate and pyrimethamine, which could be translated into clinical trials in patients with locally advanced and/or metastatic ACC.
doi:10.1186/1479-5876-10-198
PMCID: PMC3493320  PMID: 22999104
Adrenocortical cancer; High throughput drug screening; Chemotherapy; Drug repurposing; Indication switching

Results 1-25 (112)