PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  FUNCTIONAL EXPRESSION OF BRAIN NEURONAL CB2 CANNABINOID RECEPTORS ARE INVOLVED IN THE EFFECTS OF DRUGS OF ABUSE AND IN DEPRESSION 
Major depression and addiction are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2-Rs) in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R) but not (H316Y) polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. Using electron microscopy we report the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.
doi:10.1196/annals.1432.036
PMCID: PMC3922202  PMID: 18991891
Neuronal CB2 Cannabinoid Receptors; Brain; electron micrograph; chronic mild stress; anhedonia; depression; drug abuse
2.  NrCAM regulating neural systems and addiction related behaviors 
Addiction biology  2012;10.1111/j.1369-1600.2012.00469.x.
We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine, or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, PLG, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partial modulation of some glutamatargic pathways and neural function in brain.
doi:10.1111/j.1369-1600.2012.00469.x
PMCID: PMC3470748  PMID: 22780223
behavior; cell adhesion molecule; glutamate
3.  Cystatin SN Upregulation in Patients with Seasonal Allergic Rhinitis 
PLoS ONE  2013;8(8):e67057.
Seasonal allergic rhinitis (SAR) to the Japanese cedar, Cryptomeria japonica (JC) pollen is an IgE-mediated type I allergy affecting nasal mucosa. However, the molecular events underlying its development remain unclear. We sought to identify SAR-associated altered gene expression in nasal epithelial cells during natural exposure to JC pollen. We recruited study participants in 2009 and 2010 and collected nasal epithelial cells between February and April, which is the period of natural pollen dispersion. Fifteen patients with SAR-JC and 13 control subjects were enrolled in 2009, and 17 SAR-JC patients, 13 sensitized asymptomatic subjects (Sensitized), and 15 control subjects were enrolled in 2010. Total RNA was extracted from nasal epithelial cells and 8 SAR-JC patients and 6 control subjects in 2009 were subjected to microarray analysis with the Illumina HumanRef-8 Expression BeadChip platform. Allergen-stimulated histamine release was examined in the peripheral blood basophils isolated from patients with SAR. We identified 32 genes with significantly altered expression during allergen exposure. One of these, CST1 encodes the cysteine protease inhibitor, cystatin SN. CST1 expression in nasal epithelial cells was significantly upregulated in both the 2009 and 2010 SAR-JC groups compared with the control groups. Immunohistochemical staining confirmed the increased expression of CST1 in the nasal epithelial cells of SAR patients. Addition of exogenous CST1 to basophils inhibited JC allergen-stimulated histamine release in vitro. We propose that CST1 may contribute to inactivation of protease allergens and help re-establish homeostasis of the nasal membranes.
doi:10.1371/journal.pone.0067057
PMCID: PMC3741298  PMID: 23950865
4.  Experimental Evidence for the Involvement of PDLIM5 in Mood Disorders in Hetero Knockout Mice 
PLoS ONE  2013;8(4):e59320.
Background
Reports indicate that PDLIM5 is involved in mood disorders. The PDLIM5 (PDZ and LIM domain 5) gene has been genetically associated with mood disorders; it’s expression is upregulated in the postmortem brains of patients with bipolar disorder and downregulated in the peripheral lymphocytes of patients with major depression. Acute and chronic methamphetamine (METH) administration may model mania and the evolution of mania into psychotic mania or schizophrenia-like behavioral changes, respectively.
Methods
To address whether the downregulation of PDLIM5 protects against manic symptoms and cause susceptibility to depressive symptoms, we evaluated the effects of reduced Pdlim5 levels on acute and chronic METH-induced locomotor hyperactivity, prepulse inhibition, and forced swimming by using Pdlim5 hetero knockout (KO) mice.
Results
The homozygous KO of Pdlim5 is embryonic lethal. The effects of METH administration on locomotor hyperactivity and the impairment of prepulse inhibition were lower in Pdlim5 hetero KO mice than in wild-type mice. The transient inhibition of PDLIM5 (achieved by blocking the translocation of protein kinase C epsilon before the METH challenge) had a similar effect on behavior. Pdlim5 hetero KO mice showed increased immobility time in the forced swimming test, which was diminished after the chronic administration of imipramine. Chronic METH treatment increased, whereas chronic haloperidol treatment decreased, Pdlim5 mRNA levels in the prefrontal cortex. Imipramine increased Pdlim5 mRNA levels in the hippocampus.
Conclusion
These findings are partially compatible with reported observations in humans, indicating that PDLIM5 is involved in psychiatric disorders, including mood disorders.
doi:10.1371/journal.pone.0059320
PMCID: PMC3620230  PMID: 23593136
5.  Generation of Induced Pluripotent Stem Cells from Human Nasal Epithelial Cells Using a Sendai Virus Vector 
PLoS ONE  2012;7(8):e42855.
The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08–0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.
doi:10.1371/journal.pone.0042855
PMCID: PMC3418281  PMID: 22912751
6.  Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression, and regulation by cannabinoid receptor ligands 
Genes, Brain, and Behavior  2009;8(5):519-530.
Cannabinoids, endocannabinoids and marijuana activate two well-characterized cannabinoid receptors (CBRs), CB1-Rs and CB2-Rs. The expression of CB1-Rs in the brain and periphery has been well studied but neuronal CB2-Rs have received much less attention than CB1-Rs. Many studies have now identified and characterized functional glial and neuronal CB2-Rs in the central nervous system. However, many features of CB2-R gene structure, regulation and variation remain poorly characterized in comparison to the CB1-R. Here, we report on the discovery of a novel human CB2 gene promoter encoding testis (CB2A) isoform with starting exon located ca 45 kb upstream from the previously identified promoter encoding the spleen isoform (CB2B). The 5′ exons of both CB2 isoforms are untranslated 5′UTRs and alternatively spliced to the major protein coding exon of the CB2 gene. CB2A is expressed higher in testis and brain than CB2B that is expressed higher in other peripheral tissues than CB2A. Species comparison found that the CB2 gene of human, rat and mouse genomes deviated in their gene structures and isoform expression patterns. mCB2A expression was increased significantly in the cerebellum of mice treated with the CB-R mixed agonist, WIN55212-2. These results provide much improved information about CB2 gene structure and its human and rodent variants that should be considered in developing CB2-R-based therapeutic agents.
doi:10.1111/j.1601-183X.2009.00498.x
PMCID: PMC3389515  PMID: 19496827
CB2 cannabinoid receptors; CB2A; CB2B; testis; spleen; brain
7.  Genome-Wide Association Study Identifies HLA-DP as a Susceptibility Gene for Pediatric Asthma in Asian Populations 
PLoS Genetics  2011;7(7):e1002170.
Asthma is a complex phenotype influenced by genetic and environmental factors. We conducted a genome-wide association study (GWAS) with 938 Japanese pediatric asthma patients and 2,376 controls. Single-nucleotide polymorphisms (SNPs) showing strong associations (P<1×10−8) in GWAS were further genotyped in an independent Japanese samples (818 cases and 1,032 controls) and in Korean samples (835 cases and 421 controls). SNP rs987870, located between HLA-DPA1 and HLA-DPB1, was consistently associated with pediatric asthma in 3 independent populations (Pcombined = 2.3×10−10, odds ratio [OR] = 1.40). HLA-DP allele analysis showed that DPA1*0201 and DPB1*0901, which were in strong linkage disequilibrium, were strongly associated with pediatric asthma (DPA1*0201: P = 5.5×10−10, OR = 1.52, and DPB1*0901: P = 2.0×10−7, OR = 1.49). Our findings show that genetic variants in the HLA-DP locus are associated with the risk of pediatric asthma in Asian populations.
Author Summary
Asthma is the most common chronic disorder in children, and asthma exacerbation is an important cause of childhood morbidity and hospitalization. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for asthma. By examining 6,428 Asians, we found rs987870 and HLA-DPA1*0201/DPB1*0901 were associated with pediatric asthma. The association signal was stretched in the region of HLA-DPB2, collagen, type XI, alpha 2 (COL11A2), and Retinoid X receptor beta (RXRB), but strong linkage disequilibrium in this region made it difficult to specifically identify causative variants. Interestingly, the SNP (or the HLA-DP allele) associated with pediatric asthma (Th-2 type immune diseases) in the present study confers protection against Th-1 type immune diseases, such as type 1 diabetes and rheumatoid arthritis. Therefore, the association results obtained in the present study could partially explain the inverse relationship between asthma and Th-1 type immune diseases and may lead to better understanding of Th-1/Th-2 immune diseases.
doi:10.1371/journal.pgen.1002170
PMCID: PMC3140987  PMID: 21814517
8.  Supportive Evidence for Reduced Expression of GNB1L in Schizophrenia 
Schizophrenia Bulletin  2008;36(4):756-765.
Background: Chromosome 22q11 deletion syndrome (22q11DS) increases the risk of development of schizophrenia more than 10 times compared with that of the general population, indicating that haploinsufficiency of a subset of the more than 20 genes contained in the 22q11DS region could increase the risk of schizophrenia. In the present study, we screened for genes located in the 22q11DS region that are expressed at lower levels in postmortem prefrontal cortex of patients with schizophrenia than in those of controls. Methods: Gene expression was screened by Illumina Human-6 Expression BeadChip arrays and confirmed by real-time reverse transcription-polymerase chain reaction assays and Western blot analysis. Results: Expression of GNB1L was lower in patients with schizophrenia than in control subjects in both Australian (10 schizophrenia cases and 10 controls) and Japanese (43 schizophrenia cases and 11 controls) brain samples. TBX1 could not be evaluated due to its low expression levels. Expression levels of the other genes were not significantly lower in patients with schizophrenia than in control subjects. Association analysis of tag single-nucleotide polymorphisms in the GNB1L gene region did not confirm excess homozygosity in 1918 Japanese schizophrenia cases and 1909 Japanese controls. Haloperidol treatment for 50 weeks increased Gnb1l gene expression in prefrontal cortex of mice. Conclusions: Taken together with the impaired prepulse inhibition observed in heterozygous Gnb1l knockout mice reported by the previous study, the present findings support assertions that GNB1L is one of the genes in the 22q11DS region responsible for increasing the risk of schizophrenia.
doi:10.1093/schbul/sbn160
PMCID: PMC2894596  PMID: 19011233
22q11DS; haloperidol; prefrontal cortex; postmortem brain
9.  Association of the HSPG2 Gene with Neuroleptic-Induced Tardive Dyskinesia 
Neuropsychopharmacology  2010;35(5):1155-1164.
Tardive dyskinesia (TD) is characterized by repetitive, involuntary, and purposeless movements that develop in patients treated with long-term dopaminergic antagonists, usually antipsychotics. By a genome-wide association screening of TD in 50 Japanese schizophrenia patients with treatment-resistant TD and 50 Japanese schizophrenia patients without TD (non-TD group) and subsequent confirmation in independent samples of 36 treatment-resistant TD and 136 non-TD subjects, we identified association of a single nucleotide polymorphism, rs2445142, (allelic p=2 × 10−5) in the HSPG2 (heparan sulfate proteoglycan 2, perlecan) gene with TD. The risk allele was significantly associated with higher expression of HSPG2 in postmortem human prefrontal brain (p<0.01). Administration of daily injection of haloperidol (HDL) for 50 weeks significantly reduced Hspg2 expression in mouse brains (p<0.001). Vacuous chewing movements (VCMs) induced by 7-week injection of haloperidol–reserpine were significantly infrequent in adult Hspg2 hetero-knockout mice compared with wild-type littermates (p<0.001). Treatment by the acetylcholinesterase inhibitor, physostigmine, was significantly effective for reduction of VCMs in wild-type mice but not in Hspg2 hetero-knockout mice. These findings suggest that the HSPG2 gene is involved in neuroleptic-induced TD and higher expression of HSPG2, probably even after antipsychotic treatment, and may be associated with TD susceptibility.
doi:10.1038/npp.2009.220
PMCID: PMC3055411  PMID: 20072119
acetylcholine; neurogenetics; schizophrenia/antipsychotics; pharmacogenetics/pharmacogenomics; tardive dyskinesia; Acetylcholine; Neurogenetics; Schizophrenia/Antipsychotics; Pharmacogenetics/Pharmacogenomics; tardive dyskinesia
10.  Contiguous Xp11.4 Gene Deletion Leading to Ornithine Transcarbamylase Deficiency Detected by High-density Single-nucleotide Array 
Ornithine transcarbamylase (OTC) is one of the enzymes involved in the urea cycle. OTC deficiency, which is caused by impaired synthesis of OTC in the liver, is the most common inherited disease of urea cycle disorders. In this paper, we describe the case of an OTC-deficient Japanese boy wherein an analysis based on high-density single-nucleotide polymorphisms (SNPs) revealed the absence of the entire OTC locus and nearby genes. We identified a deletion on Xp11.4; the size of the deletion fragment was approximately 1 Mb. The deleted region included genes encoding transmembrane 4 superfamily member 2 (TSPAN7), MID1 interacting protein 1 (MID1IP1) and part of the retinitis pigmentosa GTPase regulator (RPGR) in addition to OTC. The results of a high-density SNP assay and PCR confirmed that the mother of the patient was a carrier of the mutation. Previously, determination of breakpoints for large unknown deletions was timeconsuming and laborintensive. However, the use of the widely available DNA chip technology allows for rapid determination of deletion breakpoints; therefore, it will become a standard technique in study of patients with a large genomic deletion of contiguous genes for provision of comprehensive genetic counseling and initiation of clinical management.
doi:10.1297/cpe.19.25
PMCID: PMC3687618  PMID: 23926375
OTC deficiency; high-density SNP assay; RPGR
11.  Large scale genotyping study for asthma in the Japanese population 
BMC Research Notes  2009;2:54.
Background
Asthma is a complex phenotype that is influenced by both genetic and environmental factors. Genome-wide linkage and association studies have been performed to identify susceptibility genes for asthma. These studies identified new genes and pathways implicated in this disease, many of which were previously unknown.
Objective
To perform a large-scale genotyping study to identify asthma-susceptibility genes in the Japanese population.
Methods
We performed a large-scale, three-stage association study on 288 atopic asthmatics and 1032 controls, by using multiplex PCR-Invader assay methods at 82,935 single nucleotide polymorphisms (SNPs) (1st stage). SNPs that were strongly associated with asthma were further genotyped in samples from asthmatic families (216 families, 762 members, 2nd stage), 541 independent patients, and 744 controls (3rd stage).
Results
SNPs located in the 5' region of PEX19 (rs2820421) were significantly associated with P < 0.05 through the 1st to the 3rd stage analyses; however, the P values did not reach statistically significant levels (combined, P = 3.8 × 10-5; statistically significant levels with Bonferroni correction, P = 6.57 × 10-7). SNPs on HPCAL1 (rs3771140) and on IL18R1 (rs3213733) were associated with asthma in the 1st and 2nd stage analyses, but the associations were not observed in the 3rd stage analysis.
Conclusion
No association attained genome-wide significance, but several loci for possible association emerged. Future studies are required to validate these results for the prevention and treatment of asthma.
doi:10.1186/1756-0500-2-54
PMCID: PMC2674055  PMID: 19335888
12.  Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region 
Arthritis Research & Therapy  2008;10(5):R113.
Introduction
Recent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.
Methods
In the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.
Results
In the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).
Conclusions
The same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent.
doi:10.1186/ar2516
PMCID: PMC2592800  PMID: 18803832
13.  Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes 
BMC Medical Genetics  2008;9:42.
Background
Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the Rho GTPase-activating protein 4 (ARHGAP4) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity.
ARHGAP4 is expressed at high levels in hematopoietic cells, and it has been reported that an NDI patient lacking AVPR2 and all of ARHGAP4 showed immunodeficiency characterised by a marked reduction in the number of circulating CD3+ cells and almost complete absence of CD8+ cells.
Methods
PCR and sequencing were performed to identify the deleted region in the Japanese NDI patients. Immunological profiles of the NDI patients were analysed by flow cytometry. We also investigated the gene expression profiles of peripheral blood mononuclear cells (PBMC) from NDI patients and healthy controls in microarray technique.
Results
We evaluated subjects (one child and two adults) with 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the ARHGAP4. Hematologic tests showed a reduction of CD4+ cells in one adult patient, a reduction in CD8+ cells in the paediatric patient, and a slight reduction in the serum IgG levels in the adult patients, but none of them showed susceptibility to infection. Gene expression profiling of PBMC lacking ARHGAP4 revealed that expression of RhoGAP family genes was not influenced greatly by the lack of ARHGAP4.
Conclusion
These results suggest that loss of ARHGAP4 expression is not compensated for by other family members. ARHGAP4 may play some role in lymphocyte differentiation but partial loss of ARHGAP4 does not result in clinical immunodeficiency.
doi:10.1186/1471-2350-9-42
PMCID: PMC2413213  PMID: 18489790
14.  Brain Neuronal CB2 Cannabinoid Receptors in Drug Abuse and Depression: From Mice to Human Subjects 
PLoS ONE  2008;3(2):e1640.
Background
Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs) in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown.
Methodology/Principal Findings
In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R) but not (H316Y) polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain.
Conclusions/Significance
Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.
doi:10.1371/journal.pone.0001640
PMCID: PMC2241668  PMID: 18286196
15.  Single nucleotide polymorphism-based genome-wide linkage analysis in Japanese atopic dermatitis families 
BMC Dermatology  2007;7:5.
Background
Atopic dermatitis develops as a result of complex interactions between several genetic and environmental factors. To date, 4 genome-wide linkage studies of atopic dermatitis have been performed in Caucasian populations, however, similar studies have not been done in Asian populations. The aim of this study was to identify chromosome regions linked to atopic dermatitis in a Japanese population.
Methods
We used a high-density, single nucleotide polymorphism genotyping assay, the Illumina BeadArray Linkage Mapping Panel (version 4) comprising 5,861 single nucleotide polymorphisms, to perform a genome-wide linkage analysis of 77 Japanese families with 111 affected sib-pairs with atopic dermatitis.
Results
We found suggestive evidence for linkage with 15q21 (LOD = 2.01, NPL = 2.87, P = .0012) and weak linkage to 1q24 (LOD = 1.26, NPL = 2.44, P = .008).
Conclusion
We report the first genome-wide linkage study of atopic dermatitis in an Asian population, and novel loci on chromosomes 15q21 and 1q24 linked to atopic dermatitis. Identification of novel causative genes for atopic dermatitis will advance our understanding of the pathogenesis of atopic dermatitis.
doi:10.1186/1471-5945-7-5
PMCID: PMC2082241  PMID: 17900373

Results 1-15 (15)