PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder 
Background: Neonatal adrenoleucodystrophy (NALD) is a rare disorder resulting from abnormal peroxisomal biogenesis. Affected patients present in infancy with developmental delay, hypotonia, and seizures. Blindness and nystagmus are prominent features. The authors suggest a characteristic leopard spot pigmentary pattern in the peripheral retina to be diagnostic.
Methods: Three patients are reported with this presentation; the characteristic retinal appearance resulted in early diagnosis for one of these.
Conclusion: Leopard spot retinopathy in an infant with hypotonia, seizures, developmental delay, with or without dysmorphic features and hearing impairment, is a clue to the diagnosis of NALD.
doi:10.1136/bjo.2003.023010
PMCID: PMC1772012  PMID: 14736770
adrenoleucodystrophy; infancy; leopard spot; peroxisome
2.  Metachromatic leucodystrophy in three families from Nova Scotia, Canada: a recurring mutation in the arylsulphatase A gene. 
Journal of Medical Genetics  1997;34(6):493-498.
Metachromatic leucodystrophy (MLD) is a lysosomal storage disease resulting from a deficiency of arylsulphatase A. We have identified a child with infantile onset MLD who is homozygous for an A212V mutation, a mutation previously reported but not further characterised. We have introduced this mutation into an arylsulphatase A expression vector by site directed mutagenesis. Transient expression of this mutant plasmid in COS cells yields very low levels of arylsulphatase A activity consistent with the patient's phenotype. The arylsulphatase A pseudodeficiency also segregates in this family causing difficulty in interpreting enzyme levels in the absence of DNA data. Two other patients from the same province, also carrying the A212V allele, have juvenile and adult onset MLD and are heterozygous for P426L ("A" allele) and I179S alleles respectively, known late onset alleles.
Images
PMCID: PMC1050974  PMID: 9192271
4.  Metabolic Diseases in Children 
Canadian Family Physician  1988;34:387-392.
A family physician is likely to be the person presented with the responsibility of diagnosing a child with a metabolic disease. Such diseases can have very varied clinical presentations. This article presents a framework of laboratory tests which should be used to diagnose children presenting with acute metabolic diseases. Some specific diseases likely to be encountered are discussed and put into the overall perspective of a family practice.
Images
PMCID: PMC2218781  PMID: 21253056
metabolic diseases; pediatrics; laboratory medicine
6.  Type II hyperprolinemia. Delta1-pyrroline-5-carboxylic acid dehydrogenase deficiency in cultured skin fibroblasts and circulating lymphocytes. 
Journal of Clinical Investigation  1976;58(3):598-603.
Type II hyperprolinemia is an inherited abnormality in amino acid metabolism characterized by elevated plasma proline concentrations, iminoglycinuria, and the urinary excretion of delta1-pyrroline compounds. To define the enzymologic defect of this biochemical disorder, we developed a specific, sensitive radioisotopic assay for the proline degradative enzyme delta1-pyrroline-5-carboxylic acid dehydrogenase. Using this assay, we have shown an absence of delta1-pyrroline-5-carboxylic acid dehydrogenase activity in the cultured fibroblasts from three patients with type II hyperprolinemia. We confirmed this result on cultured cells by demonstrating a similar absence of delta1-pyrroline-5-carboxylic acid dehydrogenase activity in extracts prepared from the peripheral leukocytes of these patients. Additionally, we found significantly decreased levels of delta1-pyrroline-5-carboxylic acid dehydrogenase activity in the leukocyte extracts from five obligate heterozygotes for type II hyperprolinemia. We also demonstrated a reduction in leukocyte delta1-pyrroline-5-carboxylic acid dehydrogenase activity in three successive generations of a family. These results prove that an absence of delta1-pyrroline-5-carboxylic acid dehydrogenase is the enzymologic defect in type II hyperprolinemia and that this defect is inherited in an autosomal recessive fashion.
PMCID: PMC333218  PMID: 956388

Results 1-9 (9)