PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (81)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Oxidant stress promotes disease by activating CaMKII 
CaMKII is activated by oxidation of methionine residues residing in the regulatory domain. Oxidized CaMKII (ox-CaMKII) is now thought to participate in cardiovascular and pulmonary diseases and cancer. This invited review summarizes current evidence for the role of ox-CaMKII in disease, considers critical knowledge gaps and suggests new areas for inquiry.
doi:10.1016/j.yjmcc.2015.10.014
PMCID: PMC5075238  PMID: 26475411
3.  Mitochondrial-Targeted Antioxidant Therapy Decreases Transforming Growth Factor-β–Mediated Collagen Production in a Murine Asthma Model 
Asthma is a disease of acute and chronic inflammation in which cytokines play a critical role in orchestrating the allergic inflammatory response. IL-13 and transforming growth factor (TGF)-β promote fibrotic airway remodeling, a major contributor to disease severity. Improved understanding is needed, because current therapies are inadequate for suppressing development of airway fibrosis. IL-13 is known to stimulate respiratory epithelial cells to produce TGF-β, but the mechanism through which this occurs is unknown. Here, we tested the hypothesis that reactive oxygen species (ROS) are a critical signaling intermediary between IL-13 or allergen stimulation and TGF-β–dependent airway remodeling. We used cultured human bronchial epithelial cells and an in vivo mouse model of allergic asthma to map a pathway where allergens enhanced mitochondrial ROS, which is an essential upstream signal for TGF-β activation and enhanced collagen production and deposition in airway fibroblasts. We show that mitochondria in airway epithelium are an essential source of ROS that activate TGF-β expression and activity. TGF-β from airway epithelium stimulates collagen expression in fibroblasts, contributing to an early fibrotic response to allergen exposure in cultured human airway cells and in ovalbumin-challenged mice. Treatment with the mitochondrial-targeted antioxidant, (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), significantly attenuated mitochondrial ROS, TGF-β, and collagen deposition in OVA-challenged mice and in cultured human epithelial cells. Our findings suggest that mitochondria are a critical source of ROS for promoting TGF-β activity that contributes to airway remodeling in allergic asthma. Mitochondrial-targeted antioxidants may be a novel approach for future asthma therapies.
doi:10.1165/rcmb.2013-0519OC
PMCID: PMC4370251  PMID: 24988374
airway remodeling; asthma; reactive oxygen species; mitochondria
4.  Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury 
PLoS ONE  2016;11(3):e0151337.
The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP) channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD) in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB) model of heart failure is coupled with a 35–40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of CaMKII-dependent downregulation of KATP channel expression as a mechanism for vulnerability to injury in failing hearts points to strategies targeting this interaction for potential preventives or treatments.
doi:10.1371/journal.pone.0151337
PMCID: PMC4786327  PMID: 26964104
5.  CaMKII oxidative activation and the pathogenesis of cardiac disease 
Calcium and redox signaling both play important roles in the pathogenesis of cardiac disease; although how these signals are integrated in the heart remains unclear. One putative sensor for both calcium and oxidative stress in the heart is CaMKII, a calcium activated kinase that has recently been shown to also be regulated by oxidation. Oxidative activation of CaMKII occurs in several models of cardiac disease, including myocardial injury and inflammation, excessive neurohumoral activation, atrial fibrillation, and sinus node dysfunction. Additionally, oxidative activation of CaMKII is suggested in subcellular domains where calcium and ROS signaling intersect, such as mitochondria. This review describes the mechanism of activation of CAMKII by oxidation, the cardiac diseases where oxidized CaMKII has been identified, and suggests contexts where oxidized CaMKII is likely to play an important role.
doi:10.1016/j.yjmcc.2014.02.004
PMCID: PMC4048820  PMID: 24530899
Ca2+/calmodulin dependent protein kinase II; Reactive oxygen species; Heart failure; Arrhythmia; Calcium; mitochondria
6.  Intracellular Na+ Overload Causes Oxidation of CaMKII and leads to Ca2+ Mishandling in Isolated Ventricular Myocytes 
Aim
An increase of late sodium Na+ current (INaL) in cardiac myocytes can raise the cytosolic Na+ concentration and is associated with activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca2+ handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca2+ release and increased diastolic Ca2+ in myocytes.
Methods and results
Confocal fluorescent imaging was used to study effects of INaL and intracellular Na+ load on Ca2+ transients, mitochondrial ROS production, and SR-associated Ca2+ releases in intact and membrane-permeabilized rabbit ventricular myocytes. Anemone toxin-II (ATX-II) and ranolazine were used to enhance and inhibit INaL, respectively. ATX-II increased cytosolic Na+, diastolic Ca2+, ROS formation, oxidation of CaMKII, and frequency of SR Ca2+ release events. Effects of ATX-II were inhibited by ranolazine, antioxidants, and CaMKII inhibitors. Elevation of cytosolic Na+ in membrane-permeabilized myocytes increased ROS production in mitochondria and caused spontaneous Ca2+ releases from the SR. Inhibitions of CaMKII and/or ROS production with KN93 and coenzyme Q10 (CoQ10), respectively, eliminated the effects of ATX-II and Na+ overload to cause increases of ROS formation, diastolic Ca2+, and spontaneous SR Ca2+ release events. In myocytes isolated from failing mouse hearts, ranolazine and CoQ10 reduced levels of cytosolic Na+ and intracellular ROS.
Conclusion
Increases of INaL and/or of the cytosolic Na+ concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca2+ handling in rabbit cardiac myocytes.
doi:10.1016/j.yjmcc.2014.09.009
PMCID: PMC4250389  PMID: 25252177
Late sodium current; ATX-II; RyRs; CaMKII; ROS; mitochondria
7.  The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors 
Biosensors  2015;5(3):562-576.
Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM) optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.
doi:10.3390/bios5030562
PMCID: PMC4600172  PMID: 26262647
H. hepaticus; sensors; microcavities; bacterial detection; optical transducing mechanisms
8.  Mitochondria-targeting particles 
Nanomedicine (London, England)  2014;9(16):2531-2543.
Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations.
doi:10.2217/nnm.14.161
PMCID: PMC4294695  PMID: 25490424
intracellular targeting; mitochondria; mitochondria targeting; nanotechnology; organelle specific; particles
9.  Oxidized CaMKII Triggers Atrial Fibrillation 
Circulation  2013;128(16):10.1161/CIRCULATIONAHA.113.003313.
Background
Atrial fibrillation is a growing public health problem without adequate therapies. Angiotensin II (Ang II) and reactive oxygen species (ROS) are validated risk factors for atrial fibrillation (AF) in patients, but the molecular pathway(s) connecting ROS and AF is unknown. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a ROS activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ(ox-CaMKII) could contribute to AF.
Methods and Results
We found ox-CaMKII was increased in atria from AF patients compared to patients in sinus rhythm and from mice infused with Ang II compared with saline. Ang II treated mice had increased susceptibility to AF compared to saline treated WT mice, establishing Ang II as a risk factor for AF in mice. Knock in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardial-restricted transgenic over-expression of methionine sulfoxide reductase A (MsrA TG), an enzyme that reduces ox-CaMKII, were resistant to AF induction after Ang II infusion.
Conclusions
Our studies suggest that CaMKII is a molecular signal that couples increased ROS with AF and that therapeutic strategies to decrease ox-CaMKII may prevent or reduce AF.
doi:10.1161/CIRCULATIONAHA.113.003313
PMCID: PMC3876034  PMID: 24030498
atrial fibrillation; arrhythmia mechanisms; calcium/calmodulin-dependent protein kinase II; angiotensin II; reactive oxygen species
10.  CaMKII in sinoatrial node physiology and dysfunction 
The calcium and calmodulin-dependent protein kinase II (CaMKII) is present in sinoatrial node (SAN) pacemaker cells and is required for physiological “fight or flight” SAN beating rate responses. Inhibition of CaMKII in SAN does not affect baseline heart rate, but reduces heart rate increases in response to physiological stress. CaMKII senses intracellular calcium (Ca2+) changes, oxidation status, and hyperglycemia to phosphorylate substrates that regulate Ca2+-sensitive proteins, such as L-type Ca2+ channels, phospholamban, and cardiac ryanodine receptors (RyR2). All of these substrates are involved in the SAN pacemaking mechanism. Excessive CaMKII activity, as occurs under pathological conditions such as heart failure, ischemia, and diabetes, can promote intracellular Ca2+ overload and reactive oxygen species production. Oxidation of CaMKII (ox-CaMKII) locks CaMKII into a constitutively active configuration that contributes to SAN cell apoptosis and fibrosis. This ox-CaMKII-mediated loss of functional SAN cells contributes to SAN dysfunction (SND) and sudden death. Thus, CaMKII has emerged as a central regulator of physiological SAN responses and a key determinant of SND.
doi:10.3389/fphar.2014.00048
PMCID: PMC3957193  PMID: 24672485
calcium/calmodulin-dependent protein kinase II; sinoatrial node; heart rate; sinoatrial node dysfunction; calcium
11.  Why has it taken so long to learn what we still don’t know? 
Circulation research  2013;113(7):10.1161/CIRCRESAHA.113.302137.
doi:10.1161/CIRCRESAHA.113.302137
PMCID: PMC3871173  PMID: 24030016
CaV1.2; phosphorylation; protein kinases
12.  Ca2+ Cycling in Heart Failure 
Circulation research  2013;113(6):690-708.
Ca2+ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca2+ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca2+ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca2+ homeostatic binding proteins, ion channels and enzymes. This review focuses on the molecular mechanisms of defective Ca2+ cycling in heart failure and consider how fundamental understanding of these pathways may translate into novel and innovative therapies.
doi:10.1161/CIRCRESAHA.113.301651
PMCID: PMC4080816  PMID: 23989713
Calcium; heart failure; excitation-contraction coupling; CaMKII; mitochondria
13.  CaMKII Is Essential for the Proasthmatic Effects of Oxidation 
Science translational medicine  2013;5(195):195ra97.
Increased reactive oxygen species (ROS) contribute to asthma, but little is known about the molecular mechanisms connecting increased ROS with characteristic features of asthma. We show that enhanced oxidative activation of the Ca2+/calmodulin-dependent protein kinase (ox-CaMKII) in bronchial epithelium positively correlates with asthma severity and that epithelial ox-CaMKII increases in response to inhaled allergens in patients. We used mouse models of allergic airway disease induced by ovalbumin (OVA) or Aspergillus fumigatus (Asp) and found that bronchial epithelial ox-CaMKII was required to increase a ROS- and picrotoxin-sensitive Cl− current (ICl) and MUC5AC expression, upstream events in asthma progression. Allergen challenge increased epithelial ROS by activating NADPH oxidases. Mice lacking functional NADPH oxidases due to knockout of p47 and mice with epithelial-targeted transgenic expression of a CaMKII inhibitory peptide or wild-type mice treated with inhaled KN-93, an experimental small molecule CaMKII antagonist, were protected against increases in ICl, MUC5AC expression, and airway hyper-reactivity to inhaled methacholine. Our findings support the view that CaMKII is a ROS-responsive, pluripotent pro-asthmatic signal and provide proof-of-concept evidence that CaMKII is a therapeutic target in asthma.
doi:10.1126/scitranslmed.3006135
PMCID: PMC4331168  PMID: 23884469
14.  The mitochondrial uniporter controls fight or flight heart rate increases 
Nature communications  2015;6:6081.
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant negative (DN) MCU. Here we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment prior to each heartbeat. Our findings show the MCU is necessary for complete physiological heart rate acceleration and suggest MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
doi:10.1038/ncomms7081
PMCID: PMC4398998  PMID: 25603276
15.  Embryonic Stem Cell-Derived Cardiac Myocytes Are Not Ready For Human Trials 
Circulation research  2014;115(3):335-338.
Brief summary
Recently a preclinical report assessed the efficacy, safety, and feasibility of using human embryonic stem cells to regenerate infarcted myocardium in a non-human primate model. This commentary evaluates that study by pointing out key weaknesses, offering an alternative perspective, and summarizing major unresolved issues. Our conclusion is that significant challenges remain before human embryonic stem cells are ready for use in clinical trials.
doi:10.1161/CIRCRESAHA.114.304616
PMCID: PMC4133694  PMID: 24935962
17.  Microtubule-Mediated Defects in Junctophilin-2 Trafficking Contribute to Myocyte T-Tubule Remodeling and Ca2+ Handling Dysfunction in Heart Failure 
Circulation  2014;129(17):1742-1750.
Background
Cardiac dysfunction in failing hearts of human patients and animal models is associated with both microtubule densification and T-tubule remodeling. Our objective was to investigate whether microtubule densification contributes to T-tubule remodeling and excitation-contraction coupling dysfunction in heart disease.
Methods and Results
In a mouse model of pressure overload-induced cardiomyopathy by transaortic banding (TAB), colchicine, a microtubule depolymerizer, significantly ameliorated T-tubule remodeling and cardiac dysfunction. In cultured cardiomyocytes, microtubule depolymerization with nocodazole or colchicine profoundly attenuated T-tubule impairment, whereas microtubule polymerization/stabilization with taxol accelerated T-tubule remodeling. In situ immunofluorescence of heart tissue sections demonstrated significant disorganization of JP2, a protein that bridges the T-tubule and sarcoplasmic reticulum membranes, in TAB hearts as well as in human failing hearts, while colchicine injection significantly preserved the distribution of JP2 in TAB hearts. In isolated mouse cardiomyocytes, prolonged culture or treatment with taxol resulted in pronounced redistribution of JP2 from T-tubules to the peripheral plasma membrane, without changing total JP2 expression. Nocodazole treatment antagonized JP2 redistribution. Moreover, overexpression of a dominant-negative mutant of Kinesin 1, a microtubule motor protein responsible for anterograde trafficking of proteins, protected against JP2 redistribution and T-tubule remodeling in culture. Finally, nocodazole treatment improved Ca2+ handling in cultured myocytes by increasing the amplitude of Ca2+ transients and reducing the frequency of Ca2+ sparks.
Conclusions
Our data identify a mechanistic link between microtubule densification and T-tubule remodeling and reveal microtubule-mediated JP2 redistribution as a novel mechanism for T-tubule disruption, loss of E-C coupling, and heart failure.
doi:10.1161/CIRCULATIONAHA.113.008452
PMCID: PMC4006305  PMID: 24519927
Cardiomyocytes; microtubules; T-tubules; Junctophilin-2; excitation-contraction coupling
18.  Genetic Inhibition of Na+-Ca2+ Exchanger Current Disables Fight or Flight Sinoatrial Node Activity Without Affecting Resting Heart Rate 
Circulation research  2012;112(2):309-317.
Rationale
The sodium-calcium exchanger 1 (NCX1) is predominantly expressed in the heart and is implicated in controlling automaticity in isolated sinoatrial nodal (SAN) pacemaker cells, but the potential role of NCX1 in determining heart rate in vivo is unknown.
Objective
Determine the role of Ncx1 in heart rate.
Methods and Results
We employed global myocardial and SAN-targeted conditional Ncx1 knockout (Ncx1−/−) mice to measure the effect of the NCX current (INCX) in pacemaking activity in vivo, ex vivo and in isolated SAN cells. We induced conditional Ncx1−/− using a Cre/loxP system. Unexpectedly, in vivo and ex vivo hearts and isolated SAN cells showed that basal rates in Ncx1−/− (retaining ~20% of control level INCX) and control mice were similar, suggesting that physiological NCX1 expression is not required for determining resting heart rate. However, heart rate and SAN cell automaticity increases in response to isoproterenol or the dihydropyridine Ca2+ channel agonist BayK8644 were significantly blunted or eliminated in Ncx1−/− mice, indicating that NCX1 is important for fight or flight heart rate responses. In contrast the ‘pacemaker’ current (If) and L-type Ca2+ currents were equivalent in control and Ncx1−/− SAN cells under resting and isoproterenol-stimulated conditions. Ivabradine, an If antagonist with clinical efficacy, reduced basal SAN cell automaticity similarly in control and Ncx1−/− mice. However, ivabradine decreased automaticity in SAN cells isolated from Ncx1−/− mice more effectively than in control SAN cells after isoproterenol, suggesting that the importance of INCX in fight or flight rate increases is enhanced after If inhibition.
Conclusion
Physiological Ncx1 expression is required for increasing sinus rates in vivo, ex vivo and in isolated SAN cells but not for maintaining resting heart rate.
doi:10.1161/CIRCRESAHA.111.300193
PMCID: PMC3562595  PMID: 23192947
Na+-Ca2+ exchange; sinoatrial node; L-type Ca2+ channels; pacemaker current; ion channel
19.  βIV-Spectrin regulates TREK-1 membrane targeting in the heart 
Cardiovascular Research  2014;102(1):166-175.
Aims
Cardiac function depends on the highly regulated and co-ordinate activity of a large ensemble of potassium channels that control myocyte repolarization. While voltage-gated K+ channels have been well characterized in the heart, much less is known about regulation and/or targeting of two-pore K+ channel (K2P) family members, despite their potential importance in modulation of heart function.
Methods and results
Here, we report a novel molecular pathway for membrane targeting of TREK-1, a mechano-sensitive K2P channel regulated by environmental and physical factors including membrane stretch, pH, and polyunsaturated fatty acids (e.g. arachidonic acid). We demonstrate that βIV-spectrin, an actin-associated protein, is co-localized with TREK-1 at the myocyte intercalated disc, associates with TREK-1 in the heart, and is required for TREK-1 membrane targeting. Mice expressing βIV-spectrin lacking TREK-1 binding (qv4J) display aberrant TREK-1 membrane localization, decreased TREK-1 activity, delayed action potential repolarization, and arrhythmia without apparent defects in localization/function of other cardiac potassium channel subunits. Finally, we report abnormal βIV-spectrin levels in human heart failure.
Conclusions
These data provide new insight into membrane targeting of TREK-1 in the heart and establish a broader role for βIV-spectrin in organizing functional membrane domains critical for normal heart function.
doi:10.1093/cvr/cvu008
PMCID: PMC3958619  PMID: 24445605
Arrhythmia; Ankyrin; Spectrin; TREK-1; Two-pore potassium channel
20.  New Therapeutic Targets in Cardiology: Arrhythmias and CaMKII 
Circulation  2012;126(17):2125-2139.
doi:10.1161/CIRCULATIONAHA.112.124990
PMCID: PMC3532717  PMID: 23091085
arrhythmia (mechanisms); calcium; ion channels or ion channel; structural heart disease; CaMKII
21.  CaMKII: linking heart failure and arrhythmias 
Circulation research  2012;110(12):1661-1677.
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the last decade supports a view that activation of the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca2+ or oxidation, upstream signals with the capacity to transition CaMKII into a Ca2+ and calmodulin-independeant, constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca2+ homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof of concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and reducing arrhythmias. Here we review the molecular physiology of CaMKII, discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
doi:10.1161/CIRCRESAHA.111.243956
PMCID: PMC3789535  PMID: 22679140
CaMKII; Arrhythmias; Heart Failure; Ion channels; Remodeling
22.  Mitochondrial Calcium Uniporter Activity Is Dispensable for MDA-MB-231 Breast Carcinoma Cell Survival 
PLoS ONE  2014;9(5):e96866.
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.
doi:10.1371/journal.pone.0096866
PMCID: PMC4011874  PMID: 24802861
23.  Ryanodine receptor phosphorylation by oxidized CaMKII contributes to the cardiotoxic effects of cardiac glycosides 
Cardiovascular Research  2013;101(1):165-174.
Aims
Recent studies suggest that proarrhythmic effects of cardiac glycosides (CGs) on cardiomyocyte Ca2+ handling involve generation of reactive oxygen species (ROS). However, the specific pathway(s) of ROS production and the subsequent downstream molecular events that mediate CG-dependent arrhythmogenesis remain to be defined.
Methods and results
We examined the effects of digitoxin (DGT) on Ca2+ handling and ROS production in cardiomyocytes using a combination of pharmacological approaches and genetic mouse models. Myocytes isolated from mice deficient in NADPH oxidase type 2 (NOX2KO) and mice transgenically overexpressing mitochondrial superoxide dismutase displayed markedly increased tolerance to the proarrhythmic action of DGT as manifested by the inhibition of DGT-dependent ROS and spontaneous Ca2+ waves (SCW). Additionally, DGT-induced mitochondrial membrane potential depolarization was abolished in NOX2KO cells. DGT-dependent ROS was suppressed by the inhibition of PI3K, PKC, and the mitochondrial KATP channel, suggesting roles for these proteins, respectively, in activation of NOX2 and in mitochondrial ROS generation. Western blot analysis revealed increased levels of oxidized CaMKII in WT but not in NOX2KO hearts treated with DGT. The DGT-induced increase in SCW frequency was abolished in myocytes isolated from mice in which the Ser 2814 CaMKII phosphorylation site on RyR2 is constitutively inactivated.
Conclusion
These results suggest that the arrhythmogenic adverse effects of CGs on Ca2+ handling involve PI3K- and PKC-mediated stimulation of NOX2 and subsequent NOX2-dependent ROS release from the mitochondria; mitochondria-derived ROS then activate CaMKII with consequent phosphorylation of RyR2 at Ser 2814.
doi:10.1093/cvr/cvt233
PMCID: PMC3868350  PMID: 24104877
Calcium; Reactive oxygen species; NADPH oxidase; Mitochondria; CaMKII
24.  CaMKII determines mitochondrial stress responses in heart 
Nature  2012;491(7423):269-273.
Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress.
doi:10.1038/nature11444
PMCID: PMC3471377  PMID: 23051746
25.  CaMKII effects on inotropic but not lusitropic force frequency responses require phospholamban 
Increasing heart rate enhances cardiac contractility (force frequency relationship, FFR) and accelerates cardiac relaxation (frequency-dependent acceleration of relaxation, FDAR). The positive FFR together with FDAR promotes rapid filling and ejection of blood from the left ventricle (LV) at higher heart rates. Recent studies indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is involved in regulating FFR and FDAR. We used isolated perfused mouse hearts to study the mechanisms of FFR and FDAR in different genetic models, including transgenic myocardial CaMKII inhibition (AC3-I) and phosphalamban knockout (PLN−/−). When the rate was increased from 360 beats/min to 630 beats/min in wild type mouse hearts, the LV developed pressure (LVDP) and the maximum rate of increase in pressure (dP/dt max) increased by 37.6 ± 4.7% and 77.0 ± 8.1%, respectively. However, hearts from AC3-I littermates showed no increase of LVDP and a relatively modest (20.4 ± 3.9 %) increase in dP/dt max. PLN−/− hearts had a negative FFR, and myocardial AC3-I expression did not change the FFR in PLN−/− mice. PLN−/− mouse hearts did not exhibit FDAR, while PLN−/−mice with myocardial AC3-I expression showed further frequency dependent reductions in cardiac relaxation, suggesting CaMKII targets in addition to PLN were critical to myocardial relaxation. We incubated a constitutively active form of CaMKII with chemically-skinned myocardium and found that several myofilament proteins were phosphorylated by CaMKII. However, CaMKII did not affect myofilament calcium sensitivity. Our study shows that CaMKII plays an important role in modulating FFR and FDAR in murine hearts and suggest that PLN is a critical target for CaMKII effects on FFR, while CaMKII effects on FDAR partially require PLN-alternative targets.
doi:10.1016/j.yjmcc.2012.06.019
PMCID: PMC3936404  PMID: 22796260
CaM kinase II; force-frequency relation; frequency-dependent acceleration of relaxation; phospholamban

Results 1-25 (81)