PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  A genetic tool kit for cellular and behavioral analyses of insect sugar receptors  
Fly  2015;8(4):189-196.
Arthropods employ a large family of up to 100 putative taste or gustatory receptors (Grs) for the recognition of a wide range of non-volatile chemicals. In Drosophila melanogaster, a small subfamily of 8 Gr genes is thought to mediate the detection of sugars, the fly's major nutritional source. However, the specific roles for most sugar Gr genes are not known. Here, we report the generation of a series of mutant sugar Gr knock-in alleles and several composite sugar Gr mutant strains, including a sugar blind strain, which will facilitate the characterization of this gene family. Using Ca2+ imaging experiments, we show that most gustatory receptor neurons (GRNs) of sugar blind flies (lacking all 8 sugar Gr genes) fail to respond to any sugar tested. Moreover, expression of single sugar Gr genes in most sweet GRNs of sugar-blind flies does not restore sugar responses. However, when pair-wise combinations of sugar Gr genes are introduced to sweet GRNs, responses to select sugars are restored. We also examined the cellular phenotype of flies homozygous mutant for Gr64a, a Gr gene previously reported to be a major contributor for the detection of many sugars. In contrast to these claims, we find that sweet GRNs of Gr64a homozygous mutant flies show normal responses to most sugars, and only modestly reduced responses to maltose and maltotriose. Thus, the precisely engineered genetic mutations of single Gr genes and construction of a sugar-blind strain provide powerful analytical tools for examining the roles of Drosophila and other insect sugar Gr genes in sweet taste.
doi:10.1080/19336934.2015.1050569
PMCID: PMC4594417  PMID: 25984594
behavior; Drosophila; GAL4; gene knock out; Gr genes; labial palp; neurobiology; sugar blind; sugar receptors; taste
2.  An expression system for Gustatory receptors—and why it failed 
Fly  2015;8(4):232-233.
A recent paper by the Dahankuar laboratory suggested that single Drosophila sugar receptors proteins accurately mediate sugar detection when ectopically expressed in olfactory neurons of the antenna. These findings contra-dict numerous previously published electrophysiological and behavioral investigations, which all point towards heteromultimeric sugar taste receptors. Here, I provide some explanation why this “pseudo-heterologous” expression system may have led to this misleading conclusion.
doi:10.1080/19336934.2015.1039756
PMCID: PMC4594606  PMID: 25975755
expression system; Gr Genes; heterodimers; olfactory neuron; olfactony learning and memory; taste receptors
3.  Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction and Internal Nutrient Sensing 
Current biology : CB  2015;25(5):621-627.
SUMMARY
Identification of nutritious compounds is dependent on expression of specific taste receptors in appropriate taste cell types [1]. In contrast to mammals, which rely on a single, broadly tuned heterodimeric sugar receptor [2], the Drosophila genome harbors a small subfamily of eight, closely related gustatory receptor (Gr) genes, Gr5a, Gr61a and Gr64a-f, of which three have been proposed to mediate sweet taste [3-6]. However, expression and function of several of these putative sugar Gr genes are not known. Here we present a comprehensive expression and functional analysis using GrLEXA/GAL4 alleles that were generated through homologous recombination. We show that sugar Gr genes are expressed in a combinatorial manner to yield at least eight sets of sweet sensing neurons. Behavioral investigations show that most sugar Gr mutations affect taste responses to only a small number of sugars and that effective detection of most sugars is dependent on more than one Gr gene. Surprisingly, Gr64a, one of three Gr genes previously proposed to play a major role in sweet taste [3, 4], is not expressed in labellar taste neurons, and Gr64a mutant flies exhibit normal sugar responses elicited from the labellum. Our analysis provides a molecular rationale for distinct tuning profiles of sweet taste neurons, and it favors a model whereby all sugar Grs contribute to sweet taste. Furthermore, expression in olfactory organs and the brain implies novel roles for sugar Gr genes in olfaction and internal nutrient sensing, respectively. Thus, sugar receptors may contribute to feeding behavior via multiple sensory systems.
doi:10.1016/j.cub.2014.12.058
PMCID: PMC4711800  PMID: 25702577
4.  Enhancing Perception of Contaminated Food through Acid-Mediated Modulation of Taste Neuron Responses 
Current biology : CB  2014;24(17):1969-1977.
SUMMARY
Background
Natural foods not only contain nutrients, but also non-nutritious and potentially harmful chemicals. Thus, animals need to evaluate food content in order to make adequate feeding decisions.
Results
Here, we investigate the effects of acids on the taste neuron responses and on taste behavior of desirable, nutritious sugars and sugar/bitter compound mixtures in Drosophila melanogaster. Using Ca2+ imaging, we show that acids neither activate sweet nor bitter taste neurons in tarsal taste sensilla. However, they suppress responses to bitter compounds in bitter-sensing neurons. Moreover, acids reverse suppression of bitter compounds exerted on sweet-sensing neurons. Consistent with these observations, behavioral analyses show that bitter compound-mediated inhibition on feeding behavior is alleviated by acids. To investigate the cellular mechanism by which acids modulate these effects, we silenced bitter sensing gustatory neurons. Surprisingly, this intervention had little effect on acid-mediated de-repression of sweet neuron or feeding responses to either sugar/bitter compound mixtures, or sugar/bitter compound/acid mixtures, suggesting two independent pathways by which bitter compounds are sensed.
Conclusions
Our investigations reveal that acids, when presented in dietary relevant concentrations, enhance the perception of sugar/bitter compound mixtures. Drosophila’s natural food sources - fruits and cohabitating yeast - are rich in sugars and acids, but are rapidly colonized by microorganisms, such as fungi, protozoan parasites and bacteria, many of which produce bitter compounds. We propose that acids present in most fruits counteract the inhibitory effects of these bitter compounds during feeding.
doi:10.1016/j.cub.2014.07.069
PMCID: PMC4332783  PMID: 25131671
5.  Nutrient sensors 
Current biology : CB  2013;23(9):R369-R373.
doi:10.1016/j.cub.2013.04.002
PMCID: PMC4332773  PMID: 23660359
6.  Diverse roles for the Drosophila fructose sensor Gr43a 
Fly  2013;8(1):19-25.
The detection of nutrients, both in food and within the body, is crucial for the regulation of feeding behavior, growth, and metabolism. While the molecular basis for sensing food chemicals by the taste system has been firmly linked to specific taste receptors, relatively little is known about the molecular nature of the sensors that monitor nutrients internally. Recent reports of taste receptors expressed in other organ systems, foremost in the gastrointestinal tract of mammals and insects, has led to the proposition that some taste receptors may also be used as sensors of internal nutrients. Indeed, we provided direct evidence that the Drosophila gustatory receptor 43a (Gr43a) plays a critical role in sensing internal fructose levels in the fly brain. In addition to the brain and the taste system, Gr43a is also expressed in neurons of the proventricular ganglion and the uterus. Here, we discuss the multiple potential roles of Gr43a in the fly. We also provide evidence that its activation in the brain is likely mediated by the neuropeptide Corazonin. Finally, we posit that Gr43a may represent only a precedent for other taste receptors that sense internal nutrients, not only in flies but, quite possibly, in other animals, including mammals.
doi:10.4161/fly.27241
PMCID: PMC3974889  PMID: 24406333
brain; corazonin; fructose; nutrient sensor; proventriculus; receptor; taste; uterus; valence
7.  A fructose receptor functions as a nutrient sensor in the Drosophila brain 
Cell  2012;151(5):1113-1125.
SUMMARY
Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca2+ imaging and behavioral assays, we show that the Gustatory Receptor 43a functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, GR43a also functions as a fructose receptor in the brain. Interestingly, hemolymph fructose levels are tightly linked to feeding status: after nutritious carbohydrate consumption, fructose levels rise several fold and reach a concentration sufficient to activate GR43a in the brain. By using different feeding paradigms and artificial activation of Gr43a-expressing brain neurons, we show that GR43a is both necessary and sufficient to sense hemolymph fructose and promote feeding in hungry flies, but suppress feeding in satiated flies. Thus, our studies indicate that the Gr43a-expressing brain neurons function as a nutrient sensor for hemolymph fructose and assign opposing valence to feeding experiences in a satiation-dependent manner.
doi:10.1016/j.cell.2012.10.024
PMCID: PMC3509419  PMID: 23178127
8.  Identification of a Drosophila Glucose Receptor Using Ca2+ Imaging of Single Chemosensory Neurons 
PLoS ONE  2013;8(2):e56304.
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neurons (GRN) of taste sensilla, thereby assigning distinct taste qualities to sugars and bitter tasting compounds, respectively. Here we report a Ca2+ imaging method that allows association of ligand-mediated responses to a single GRN. We find that different sweet neurons exhibit distinct response profiles when stimulated with various sugars, and likewise, different bitter neurons exhibit distinct response profiles when stimulated with a set of bitter chemicals. These observations suggest that individual neurons within a taste modality are represented by distinct repertoires of sweet and bitter taste receptors, respectively. Furthermore, we employed this novel method to identify glucose as the primary ligand for the sugar receptor Gr61a, which is not only expressed in sweet sensing neurons of classical chemosensory sensilla, but also in two supersensitive neurons of atypical taste sensilla. Thus, single cell Ca2+ imaging can be employed as a powerful tool to identify ligands for orphan Gr proteins.
doi:10.1371/journal.pone.0056304
PMCID: PMC3571953  PMID: 23418550
9.  Hierarchical chemosensory regulation of male-male social interactions in Drosophila 
Nature neuroscience  2011;14(6):757-762.
Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. Here we show that (Z)-7-tricosene (7-T), a male-enriched cuticular hydrocarbon (CH) previously shown to inhibit male-male courtship, is also essential for normal levels of aggression. The opposite influences of 7-T on aggression and courtship are independent, but both require the gustatory receptor Gr32a. Surprisingly, sensitivity to 7-T is required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but 7-T sensitivity is independent of cVA. 7-T and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male CHs is suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote and suppress aggression and courtship, respectively, and whose influences are dominant to olfactory pheromones that enhance these behaviors.
doi:10.1038/nn.2800
PMCID: PMC3102769  PMID: 21516101
10.  Nocturnal Male Sex Drive in Drosophila 
Current biology : CB  2007;17(3):244-251.
Summary
Many behaviors and physiological processes including locomotor activity, feeding, sleep, mating, and migration are dependent on daily or seasonally reoccurring, external stimuli [1–3]. In D. melanogaster, one of the best-studied circadian behaviors is locomotion. The fruit fly is considered a diurnal (day active/night inactive) insect, based on locomotor-activity recordings of single, socially naive flies [4, 5]. We developed a new circadian paradigm that can simultaneously monitor two flies in simple social contexts. We find that heterosexual couples exhibit a drastically different locomotor-activity pattern than individual males, females, or homosexual couples. Specifically, male-female couples exhibit a brief rest phase around dusk but are highly active throughout the night and early morning. This distinct locomotor-activity rhythm is dependent on the clock genes and synchronized with close-proximity encounters, which reflect courtship, between the male and female. The close-proximity rhythm is dependent on the male and not the female and requires circadian oscillators in the brain and the antenna. Taken together, our data show that constant exposure to stimuli emanating from the female and received by the male olfactory and other sensory systems is responsible for the significant shift in intrinsic locomotor output of socially interacting flies.
doi:10.1016/j.cub.2006.11.049
PMCID: PMC2239012  PMID: 17276917
11.  Sugar receptors in Drosophila 
Current biology : CB  2007;17(20):1809-1816.
SUMMARY
Detection and discrimination of chemical compounds in potential foods are essential sensory processes when animals feed. The fruit fly Drosophila melanogaster employs 68 different gustatory receptors (GRs) for the detection of mostly non-volatile chemicals that include sugars, a diverse group of toxic compounds present in many inedible plants and spoiled foods, and pheromones [1–6]. With the exception of a trehalose (GR5a) and a caffeine (GR66a) receptor [7–9], the functions of GRs involved in feeding are unknown. Here, we show that the Gr64 genes encode receptors for numerous sugars. We generated a fly strain that contained a deletion for all six Gr64 genes (ΔGr64) and showed that these flies exhibit no or a significantly diminished proboscis extension reflex (PER) response when stimulated with glucose, maltose, sucrose and several other sugars. The only considerable response was detected when Gr64 mutant flies were stimulated with fructose. Interestingly, response to trehalose is also abolished in these flies, even though they contain a functional Gr5a gene, which has been previously shown to encode a receptor for this sugar [8, 9]. This observation indicates that two or more Gr genes are necessary for trehalose detection, suggesting that GRs function as multimeric receptor complexes. Finally, we present evidence that some members of the Gr64 gene family are transcribed as a polycistronic mRNA, providing a mechanism for co-expression of multiple sugar receptors in the same taste neurons.
doi:10.1016/j.cub.2007.09.027
PMCID: PMC2078200  PMID: 17919910
12.  Taste and pheromone perception in mammals and flies 
Genome Biology  2003;4(7):220.
Comparison of the olfactory systems in Drosophila and mouse uncovers clear differences and a few surprising similarities.
The olfactory systems of insects and mammals have analogous anatomical features and use similar molecular logic for olfactory coding. The molecular underpinnings of the chemosensory systems that detect taste and pheromone cues have only recently been characterized. Comparison of these systems in Drosophila and mouse uncovers clear differences and a few surprising similarities.
doi:10.1186/gb-2003-4-7-220
PMCID: PMC193622  PMID: 12844351
13.  Multiple RNA-protein interactions in Drosophila dosage compensation 
Genome Biology  2000;1(6):reviews1030.1-reviews1030.5.
From worms to humans, recognizing and modifying a specific chromosome is essential for dosage compensation, the mechanism by which equal X-linked gene expression in males and females is achieved. Recent molecular genetic and biochemical studies have provided new insights into how regulatory factors in Drosophila are recruited and assembled on the X chromosome, leading to the essential hypertranscription of its genes.
PMCID: PMC138894  PMID: 11178270

Results 1-13 (13)