PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (89)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori 
Nucleic Acids Research  2016;44(19):9393-9412.
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori. Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses.
doi:10.1093/nar/gkw730
PMCID: PMC5100599  PMID: 27550181
2.  S100A12 is up-regulated in pulmonary tuberculosis and predicts the extent of alveolar infiltration on chest radiography: an observational study 
Scientific Reports  2016;6:31798.
Pulmonary tuberculosis (PTB) results in lung functional impairment and there are no surrogate markers to monitor the extent of lung involvement. We investigated the clinical significance of S100A12 and soluble receptor for advanced glycation end-products (sRAGE) for predicting the extent of lung involvement. We performed an observational study in India with 119 newly diagnosed, treatment naïve, sputum smear positive, HIV-negative PTB patients and 163 healthy controls. All patients were followed-up for six months. Sociodemographic variables and the serum levels of S100A12, sRAGE, esRAGE, HMGB-1, TNF-α, IFN-γ and CRP were measured. Lung involvement in PTB patients was assessed by chest radiography. Compared with healthy controls, PTB patients had increased serum concentrations of S100A12 while sRAGE was decreased. S100A12 was an independent predictor of disease occurrence (OR 1.873, 95%CI 1.212–2.891, p = 0.004). Under DOTS therapy, S100A12 decreased significantly after 4 months whereas CRP significantly decreased after 2 months (p < 0.0001). Importantly, although CRP was also an independent predictor of disease occurrence, only S100A12 was a significant predictor of lung alveolar infiltration (OR 2.60, 95%CI 1.35–5.00, p = 0.004). These results suggest that S100A12 has the potential to assess the extent of alveolar infiltration in PTB.
doi:10.1038/srep31798
PMCID: PMC4990910  PMID: 27539060
3.  Contig-Layout-Authenticator (CLA): A Combinatorial Approach to Ordering and Scaffolding of Bacterial Contigs for Comparative Genomics and Molecular Epidemiology 
PLoS ONE  2016;11(6):e0155459.
A wide variety of genome sequencing platforms have emerged in the recent past. High-throughput platforms like Illumina and 454 are essentially adaptations of the shotgun approach generating millions of fragmented single or paired sequencing reads. To reconstruct whole genomes, the reads have to be assembled into contigs, which often require further downstream processing. The contigs can be directly ordered according to a reference, scaffolded based on paired read information, or assembled using a combination of the two approaches. While the reference-based approach appears to mask strain-specific information, scaffolding based on paired-end information suffers when repetitive elements longer than the size of the sequencing reads are present in the genome. Sequencing technologies that produce long reads can solve the problems associated with repetitive elements but are not necessarily easily available to researchers. The most common high-throughput technology currently used is the Illumina short read platform. To improve upon the shortcomings associated with the construction of draft genomes with Illumina paired-end sequencing, we developed Contig-Layout-Authenticator (CLA). The CLA pipeline can scaffold reference-sorted contigs based on paired reads, resulting in better assembled genomes. Moreover, CLA also hints at probable misassemblies and contaminations, for the users to cross-check before constructing the consensus draft. The CLA pipeline was designed and trained extensively on various bacterial genome datasets for the ordering and scaffolding of large repetitive contigs. The tool has been validated and compared favorably with other widely-used scaffolding and ordering tools using both simulated and real sequence datasets. CLA is a user friendly tool that requires a single command line input to generate ordered scaffolds.
doi:10.1371/journal.pone.0155459
PMCID: PMC4889084  PMID: 27248146
4.  A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway 
Scientific Reports  2016;6:24535.
Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κβ. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas.
doi:10.1038/srep24535
PMCID: PMC4837367  PMID: 27094446
5.  Genomic and Functional Portrait of a Highly Virulent, CTX-M-15-Producing H30-Rx Subclone of Escherichia coli Sequence Type 131 
Antimicrobial Agents and Chemotherapy  2015;59(10):6087-6095.
Escherichia coli sequence type 131 (ST131) is a pandemic clone associated with multidrug-resistant, extraintestinal infections, attributable to the presence of the CTX-M-15 extended-spectrum β-lactamase gene and mutations entailing fluoroquinolone resistance. Studies on subclones within E. coli ST131 are critically required for targeting and implementation of successful control efforts. Our study comprehensively analyzed the genomic and functional attributes of the H30-Rx subclonal strains NA097 and NA114, belonging to the ST131 lineage. We carried out whole-genome sequencing, comparative analysis, phenotypic virulence assays, and profiling of the antibacterial responses of THP1 cells infected with these subclones. Phylogenomic analysis suggested that the strains were clonal in nature and confined entirely to a single clade. Comparative genomic analysis revealed that the virulence and resistance repertoires were comparable among the H30-Rx ST131 strains except for the commensal ST131 strain SE15. Similarly, seven phage-specific regions were found to be strongly associated with the H30-Rx strains but were largely absent in the genome of SE15. Phenotypic analysis confirmed the virulence and resistance similarities between the two strains. However, NA097 was found to be more robust than NA114 in terms of virulence gene carriage (dra operon), invasion ability (P < 0.05), and antimicrobial resistance (streptomycin resistance). RT2 gene expression profiling revealed generic upregulation of key proinflammatory responses in THP1 cells, irrespective of ST131 lineage status. In conclusion, our study provides comprehensive, genome-inferred insights into the biology and immunological properties of ST131 strains and suggests clonal diversification of genomic and phenotypic features within the H30-Rx subclone of E. coli ST131.
doi:10.1128/AAC.01447-15
PMCID: PMC4576125  PMID: 26195517
6.  Cytotoxic and apoptotic effects of heat killed Mycobacterium indicus pranii (MIP) on various human cancer cell lines 
Scientific Reports  2016;6:19833.
Mycobacterium indicus pranii (MIP) is a non-pathogenic mycobacterium, which has been tested on several cancer types like lung and bladder where tumour regression and complete recovery was observed. In discovering the potential cytotoxic elements, a preliminary test was carried out using four different fractions consisting of live bacteria, culture supernatant, heat killed bacteria and heat killed culture supernatant of MIP against two human cancer cells A549 and CaSki by 3-(4,5-dimethyl thiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was investigated in MCF-7 and ORL-115 cancer cells by poly-(ADP-ribose) polymerase (PARP) and DNA fragmentation assays. Among four MIP fractions, only heat killed MIP fraction (HKB) showed significant cytotoxicity in various cancer cells with inhibitory concentration, IC50 in the range 5.6–35.0 μl/(1.0 × 106 MIP cells/ml), while cytotoxicity effects were not observed in the remaining fractions. HKB did not show cytotoxic effects on non-cancerous cells contrary to cancerous cells, suggesting its safe usage and ability to differentially recognize between these cells. Evaluation on PARP assay further suggested that cytotoxicity in cancer cells were potentially induced via caspase-mediated apoptosis. The cytotoxic and apoptotic effects of MIP HKB have indicated that this fraction can be a good candidate to further identify effective anti-cancer agents.
doi:10.1038/srep19833
PMCID: PMC4730151  PMID: 26817684
7.  Induction of Mincle by Helicobacter pylori and consequent anti-inflammatory signaling denote a bacterial survival strategy 
Scientific Reports  2015;5:15049.
Evasion of innate immune recognition is one of the key strategies for persistence of Helicobacter pylori, by virtue of its ability to modulate or escape the host innate immune receptors and signaling pathways. C-type lectin receptors (CLRs) predominantly expressed by macrophages are pivotal in tailoring immune response against pathogens. The recognition of glyco or carbohydrate moieties by Mincle (Macrophage inducible C-type lectin) is emerging as a crucial element in anti-fungal and anti-mycobacterial immunity. Herein, we demonstrate the role of Mincle in modulation of innate immune response against H. pylori infection. Our results revealed an upregulated expression of Mincle which was independent of direct host cell contact. Upon computational modelling, Mincle was observed to interact with the Lewis antigens of H. pylori LPS and possibly activating an anti-inflammatory cytokine production, thereby maintaining a balance between pro- and anti-inflammatory cytokine production. Furthermore, siRNA mediated knockdown of Mincle in human macrophages resulted in up regulation of pro-inflammatory cytokines and consequent down regulation of anti-inflammatory cytokines. Collectively, our study demonstrates a novel mechanism employed by H. pylori to escape clearance by exploiting functional plasticity of Mincle to strike a balance between pro-and anti-inflammatory responses ensuring its persistence in the host.
doi:10.1038/srep15049
PMCID: PMC4601021  PMID: 26456705
8.  A Novel Reading Scheme for Assessing the Extent of Radiographic Abnormalities and Its Association with Disease Severity in Sputum Smear-Positive Tuberculosis: An Observational Study in Hyderabad/India 
PLoS ONE  2015;10(9):e0138070.
Background
Existing reading schemes for chest X-ray (CXR) used to grade the extent of disease severity at diagnosis in patients with pulmonary tuberculosis (PTB) are often based on numerical scores that summate specific radiographic features. However, since PTB is known to exhibit a wide heterogeneity in pathology, certain features might be differentially associated with clinical parameters of disease severity.
Objective
We aimed to grade disease severity in PTB patients at diagnosis and after completion of DOTS treatment by developing a reading scheme based on five different radiographic manifestations and analyze their association with the clinical parameters of systemic involvement and infectivity.
Methods
141 HIV-negative adults with newly diagnosed sputum smear-positive PTB were enrolled in a prospective observational study in Hyderabad, India. The presence and extent on CXRs of five radiographic manifestations, i.e., lung involvement, alveolar infiltration, cavitation, lymphadenopathy and pleural effusion, were classified using the new reading scheme by using a four-quadrant approach. We evaluated the inter-reader reliability of each manifestation, and its association with BMI and sputum smear positivity at diagnosis. The presence and extent of these radiographic manifestations were further compared with CXRs on completion of DOTS treatment.
Results
At diagnosis, an average lung area of 51.7% +/- 23.3% was affected by radiographic abnormalities. 94% of the patients had alveolar infiltrates, with 89.4% located in the upper quadrants, suggesting post primary PTB and in 34.8% of patients cavities were found. We further showed that the extent of affected lung area was a negative predictor of BMI (β value -0.035, p 0.019). No significant association of BMI with any of the other CXR features was found. The extent of alveolar infiltrates, along with the presence of cavitation, were strongly associated with sputum smear positivity. The microbiological cure rate in our cohort after 6 months of DOTS treatment was 95%. The extent of the affected lung area in these patients decreased from 56.0% +/- 21.5% to 31.0 +/- 20% and a decrease was also observed in the extent of alveolar infiltrates from 98.4% to 25.8% in at least one quadrant, presence of cavities from 34.8% to 1.6%, lymphadenopathy from 46.8% to 16.1%, and pleural effusion from 19.4% to 6.5%.
Conclusions
We established a new assessment scheme for grading disease severity in PTB by specifically considering five radiographic manifestations which were differently associated with the BMI and sputum smear positivity, changed to a different extent after 6 months of treatment and exhibited an excellent agreement between radiologists. Our results suggest that this reading scheme might contribute to the estimation of disease severity with respect to differences in disease pathology. Further studies are needed to determine a correlation with short and long-term pulmonary function impairment and whether there would be any benefit in lengthening or modulating therapy based on this CXR severity assessment.
doi:10.1371/journal.pone.0138070
PMCID: PMC4575099  PMID: 26381644
9.  Genotypic and Phenotypic Profiles of Escherichia coli Isolates Belonging to Clinical Sequence Type 131 (ST131), Clinical Non-ST131, and Fecal Non-ST131 Lineages from India 
Antimicrobial Agents and Chemotherapy  2014;58(12):7240-7249.
In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
doi:10.1128/AAC.03320-14
PMCID: PMC4249578  PMID: 25246402
10.  Tuberculosis Biliary Stricture Simulating as Cholangiocarcinoma 
doi:10.7860/JCDR/2015/11266.5706
PMCID: PMC4413116  PMID: 25954666
Biliary stricture; Obstructive jaundice; Polymerase chain ction (PCR); Tuberculosis
11.  Metastatic Amelanotic Melanoma with Occult Primary Masquerading as Sarcoma 
Malignant melanoma with occult primary is extremely rare. It is found that survival is almost same or even better than the melanomas with known primary site. Surgeons should have a high index of suspicion when a patient presents like sarcoma which bleeds profusely when planning for excision. Here, is an unusual case of young adult which presented initially with granulomatous lymphandenitis in axilla with primary suspicion of tuberculosis, later turning out to be sarcoma on FNAC and MRI. On immunochemistry (IHC), the final diagnosis of amelanotic melanoma was made and further workup did not show up any primary site of origin.
doi:10.7860/JCDR/2015/11652.5554
PMCID: PMC4378792  PMID: 25859510
FNAC; Granulomatous lymphadenitis; Sarcoma
12.  Genome dynamics and evolution of Salmonella Typhi strains from the typhoid-endemic zones 
Scientific Reports  2014;4:7457.
Typhoid fever poses significant burden on healthcare systems in Southeast Asia and other endemic countries. Several epidemiological and genomic studies have attributed pseudogenisation to be the major driving force for the evolution of Salmonella Typhi although its real potential remains elusive. In the present study, we analyzed genomes of S. Typhi from different parts of Southeast Asia and Oceania, comprising of isolates from outbreak, sporadic and carrier cases. The genomes showed high genetic relatedness with limited opportunity for gene acquisition as evident from pan-genome structure. Given that pseudogenisation is an active process in S. Typhi, we further investigated core and pan-genome profiles of functional and pseudogenes separately. We observed a decline in core functional gene content and a significant increase in accessory pseudogene content. Upon functional classification, genes encoding metabolic functions formed a major constituent of pseudogenes as well as core functional gene clusters with SNPs. Further, an in-depth analysis of accessory pseudogene content revealed the existence of heterogeneous complements of functional and pseudogenes among the strains. In addition, these polymorphic genes were also enriched in metabolism related functions. Thus, the study highlights the existence of heterogeneous strains in a population with varying metabolic potential and that S. Typhi possibly resorts to metabolic fine tuning for its adaptation.
doi:10.1038/srep07457
PMCID: PMC4264004  PMID: 25504040
13.  Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages suggestive of differential evolution 
Nucleic Acids Research  2014;43(1):324-335.
The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host–pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
doi:10.1093/nar/gku1271
PMCID: PMC4288169  PMID: 25452339
14.  Genomes of Two Clinical Isolates of Mycobacterium tuberculosis from Odisha, India 
Genome Announcements  2014;2(2):e00199-14.
We report whole-genome sequences of two clinical isolates of Mycobacterium tuberculosis isolated from patients in Odisha, India. The sequence analysis revealed that these isolates are of an ancestral type and might represent some of the “pristine” isolates in India that have not admixed with other lineages.
doi:10.1128/genomeA.00199-14
PMCID: PMC3961728  PMID: 24652981
15.  Genome anatomy of the gastrointestinal pathogen, Vibrio parahaemolyticus of crustacean origin 
Gut Pathogens  2013;5:37.
Vibrio parahaemolyticus, an important human pathogen, is associated with gastroenteritis and transmitted through partially cooked seafood. It has become a major concern in the production and trade of marine food products. The prevalence of potentially virulent and pathogenic V. parahaemolyticus in raw seafood is of public health significance. Here we describe the genome sequence of a V. parahaemolyticus isolate of crustacean origin which was cultured from prawns in 2008 in Selangor, Malaysia (isolate PCV08-7). The next generation sequencing and analysis revealed that the genome of isolate PCV08-7 has closest similarity to that of V. parahaemolyticus RIMD2210633. However, there are certain unique features of the PCV08-7 genome such as the absence of TDH-related hemolysin (TRH), and the presence of HU-alpha insertion. The genome of isolate PCV08-7 encodes a thermostable direct hemolysin (TDH), an important virulence factor that classifies PCV08-7 isolate to be a serovariant of O3:K6 strain. Apart from these, we observed that there is certain pattern of genetic rearrangements that makes V. parahaemolyticus PCV08-7 a non-pandemic clone. We present detailed genome statistics and important genetic features of this bacterium and discuss how its survival, adaptation and virulence in marine and terrestrial hosts can be understood through the genomic blueprint and that the availability of genome sequence entailing this important Malaysian isolate would likely enhance our understanding of the epidemiology, evolution and transmission of foodborne Vibrios in Malaysia and elsewhere.
doi:10.1186/1757-4749-5-37
PMCID: PMC4029742  PMID: 24330647
Vibrio parahaemolyticus; Genomics; Malaysia; Seafood; Comparative genomics
16.  Multiresistant Uropathogenic Escherichia coli from a Region in India Where Urinary Tract Infections Are Endemic: Genotypic and Phenotypic Characteristics of Sequence Type 131 Isolates of the CTX-M-15 Extended-Spectrum-β-Lactamase-Producing Lineage 
Antimicrobial Agents and Chemotherapy  2012;56(12):6358-6365.
Escherichia coli sequence type 131 (O25b:H4), associated with the CTX-M-15 extended-spectrum beta-lactamases (ESBLs) and linked predominantly to the community-onset antimicrobial-resistant infections, has globally emerged as a public health concern. However, scant attention is given to the understanding of the molecular epidemiology of these strains in high-burden countries such as India. Of the 100 clinical E. coli isolates obtained by us from a setting where urinary tract infections are endemic, 16 ST131 E. coli isolates were identified by multilocus sequence typing (MLST). Further, genotyping and phenotyping methods were employed to characterize their virulence and drug resistance patterns. All the 16 ST131 isolates harbored the CTX-M-15 gene, and half of them also carried TEM-1; 11 of these were positive for blaOXA groups 1 and 12 for aac(6′)-Ib-cr. At least 12 isolates were refractory to four non-beta-lactam antibiotics: ciprofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline. Nine isolates carried the class 1 integron. Plasmid analysis indicated a large pool of up to six plasmids per strain with a mean of approximately three plasmids. Conjugation and PCR-based replicon typing (PBRT) revealed that the spread of resistance was associated with the FIA incompatibility group of plasmids. Pulsed-field gel electrophoresis (PFGE) and genotyping of the virulence genes showed a low level of diversity among these strains. The association of ESBL-encoding plasmid with virulence was demonstrated in transconjugants by serum assay. None of the 16 ST131 ESBL-producing E. coli strains were known to synthesize carbapenemase enzymes. In conclusion, our study reports a snapshot of the highly virulent/multiresistant clone ST131 of uropathogenic E. coli from India. This study suggests that the ST131 genotypes from this region are clonally evolved and are strongly associated with the CTX-M-15 enzyme, carry a high antibiotic resistance background, and have emerged as an important cause of community-acquired urinary tract infections.
doi:10.1128/AAC.01099-12
PMCID: PMC3497203  PMID: 23045357
17.  Genome Sequence and Comparative Pathogenomics Analysis of a Salmonella enterica Serovar Typhi Strain Associated with a Typhoid Carrier in Malaysia 
Journal of Bacteriology  2012;194(21):5970-5971.
Salmonella enterica serovar Typhi is a human pathogen that causes typhoid fever predominantly in developing countries. In this article, we describe the whole genome sequence of the S. Typhi strain CR0044 isolated from a typhoid fever carrier in Kelantan, Malaysia. These data will further enhance the understanding of its host persistence and adaptive mechanism.
doi:10.1128/JB.01416-12
PMCID: PMC3486090  PMID: 23045488
18.  Next-Generation Sequencing and De Novo Assembly, Genome Organization, and Comparative Genomic Analyses of the Genomes of Two Helicobacter pylori Isolates from Duodenal Ulcer Patients in India 
Journal of Bacteriology  2012;194(21):5963-5964.
The prevalence of different H. pylori genotypes in various geographical regions indicates region-specific adaptations during the course of evolution. Complete genomes of H. pylori from countries with high infection burdens, such as India, have not yet been described. Herein we present genome sequences of two H. pylori strains, NAB47 and NAD1, from India. In this report, we briefly mention the sequencing and finishing approaches, genome assembly with downstream statistics, and important features of the two draft genomes, including their phylogenetic status. We believe that these genome sequences and the comparative genomics emanating thereupon will help us to clearly understand the ancestry and biology of the Indian H. pylori genotypes, and this will be helpful in solving the so-called Indian enigma, by which high infection rates do not corroborate the minuscule number of serious outcomes observed, including gastric cancer.
doi:10.1128/JB.01371-12
PMCID: PMC3486096  PMID: 23045484
19.  Insights from the Genome Sequence of a Salmonella enterica Serovar Typhi Strain Associated with a Sporadic Case of Typhoid Fever in Malaysia 
Journal of Bacteriology  2012;194(18):5124-5125.
Salmonella enterica serovar Typhi is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths globally. Herein, we describe the whole-genome sequence of the Salmonella Typhi strain ST0208, isolated from a sporadic case of typhoid fever in Kuala Lumpur, Malaysia. The whole-genome sequence and comparative genomics allow an in-depth understanding of the genetic diversity, and its link to pathogenicity and evolutionary dynamics, of this highly clonal pathogen that is endemic to Malaysia.
doi:10.1128/JB.01062-12
PMCID: PMC3430317  PMID: 22933756
20.  Whole-Genome Sequences and Comparative Genomics of Salmonella enterica Serovar Typhi Isolates from Patients with Fatal and Nonfatal Typhoid Fever in Papua New Guinea 
Journal of Bacteriology  2012;194(18):5122-5123.
Many of the developing countries of the Southeast Asian region are significantly affected by endemic typhoid fever, possibly as a result of marginal living standards. It is an important public health problem in countries such as Papua New Guinea, which is geographically close to some of the foci of endemicity in Asia. The severity of the disease varies in different regions, and this may be attributable to genetic diversity among the native strains. Genome sequence data on strains from different countries are needed to clearly understand their genetic makeup and virulence potential. We describe the genomes of two Salmonella Typhi isolates from patients with fatal and nonfatal cases of typhoid fever in Papua New Guinea. We discuss in brief the underlying sequencing methodology, assembly, genome statistics, and important features of the two draft genomes, which form an essential step in our functional molecular infection epidemiology program centering on typhoid fever. The comparative genomics of these and other isolates would enable us to identify genetic rearrangements and mechanisms responsible for endemicity and the differential severity of pathogenic salmonellae in Papua New Guinea and elsewhere.
doi:10.1128/JB.01051-12
PMCID: PMC3430347  PMID: 22933755
21.  Genetic Fine Structure of a Salmonella enterica Serovar Typhi Strain Associated with the 2005 Outbreak of Typhoid Fever in Kelantan, Malaysia 
Journal of Bacteriology  2012;194(13):3565-3566.
Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere.
doi:10.1128/JB.00581-12
PMCID: PMC3434757  PMID: 22689247
22.  Genome sequencing and analysis of Salmonella enterica serovar Typhi strain CR0063 representing a carrier individual during an outbreak of typhoid fever in Kelantan, Malaysia 
Gut Pathogens  2012;4:20.
Salmonella Typhi is a human restricted pathogen with a significant number of individuals as asymptomatic carriers of the bacterium. Salmonella infection can be effectively controlled if a reliable method for identification of these carriers is developed. In this context, the availability of whole genomes of carrier strains through high- throughput sequencing and further downstream analysis by comparative genomics approaches is very promising. Herein we describe the genome sequence of a Salmonella Typhi isolate representing an asymptomatic carrier individual during a prolonged outbreak of typhoid fever in Kelantan, Malaysia. Putative genomic coordinates relevant in pathogenesis and persistence of this carrier strain are identified and discussed.
doi:10.1186/1757-4749-4-20
PMCID: PMC3528463  PMID: 23234298
23.  In vitro cytokine profiles and viability of different human cells treated with whole cell lysate of Mycobacterium avium subsp. paratuberculosis 
Gut Pathogens  2012;4:10.
Mycobacterium avium subsp. paratuberculosis (MAP) is a zoonotic pathogen, a very slow growing bacterium which is difficult to isolate and passage in conventional laboratory culture. Although its association with Johne’s disease or paratuberculosis of cattle is well established, it has been only putatively linked to Crohn’s disease in humans. Further, MAP has been recently suggested to be a trigger for other autoimmune diseases such as type-1 diabetes mellitus (T1DM). Recently, some studies have indicated that exposure to MAP is associated with elevated levels of antibodies against MAP lysate although the exact mechanism and significance of the same remains unclear. Further, the cytokine profiles relevant in MAP associated diseases of humans and their exact role in the pathophysiology are not clearly known. We performed in vitro cytokine analyses after exposing different cultured human cells to the whole cell lysate of MAP and found that MAP lysate induces secretion of cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α by human peripheral blood mononuclear cells (PBMCs). Also, it induces secretion of IL-8 by cultured human stomach adenocarcinoma cells (AGS) and PANC-1(human pancreatic carcinoma cell line) cells. We also found that MAP lysate induced cytotoxicity in PANC-1cells. Collectively, these results provide a much needed base-line data set of cytokines broadly signifying a MAP induced cellular response by human cells.
doi:10.1186/1757-4749-4-10
PMCID: PMC3495707  PMID: 23006537
24.  Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution 
Nucleic Acids Research  2012;40(21):10832-10850.
Understanding the evolutionary and genomic mechanisms responsible for turning the soil-derived saprophytic mycobacteria into lethal intracellular pathogens is a critical step towards the development of strategies for the control of mycobacterial diseases. In this context, Mycobacterium indicus pranii (MIP) is of specific interest because of its unique immunological and evolutionary significance. Evolutionarily, it is the progenitor of opportunistic pathogens belonging to M. avium complex and is endowed with features that place it between saprophytic and pathogenic species. Herein, we have sequenced the complete MIP genome to understand its unique life style, basis of immunomodulation and habitat diversification in mycobacteria. As a case of massive gene acquisitions, 50.5% of MIP open reading frames (ORFs) are laterally acquired. We show, for the first time for Mycobacterium, that MIP genome has mosaic architecture. These gene acquisitions have led to the enrichment of selected gene families critical to MIP physiology. Comparative genomic analysis indicates a higher antigenic potential of MIP imparting it a unique ability for immunomodulation. Besides, it also suggests an important role of genomic fluidity in habitat diversification within mycobacteria and provides a unique view of evolutionary divergence and putative bottlenecks that might have eventually led to intracellular survival and pathogenic attributes in mycobacteria.
doi:10.1093/nar/gks793
PMCID: PMC3505973  PMID: 22965120
25.  Mycobacterium tuberculosis DosR Regulon Gene Rv0079 Encodes a Putative, ‘Dormancy Associated Translation Inhibitor (DATIN)’ 
PLoS ONE  2012;7(6):e38709.
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a ‘dormancy associated translation inhibitor’ or DATIN.
doi:10.1371/journal.pone.0038709
PMCID: PMC3374827  PMID: 22719925

Results 1-25 (89)