Search tips
Search criteria

Results 1-25 (56)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans 
Nature immunology  2008;10(1):116-125.
A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene ‘signatures’ that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4—an orchestrator of the integrated stress response—that correlated with and predicted YF-17D CD8+ T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.
PMCID: PMC4049462  PMID: 19029902
2.  Caspase-11 protects against bacteria that escape the vacuole 
Science (New York, N.Y.)  2013;339(6122):975-978.
Caspases are either apoptotic or inflammatory. The inflammatory Caspases-1 and -11 trigger pyroptosis, a form of programmed cell death. Whereas both can be detrimental in inflammatory disease, only Caspase-1 has an established protective role during infection. Herein, we report that Caspase-11 is required for innate immunity to cytosolic, but not vacuolar, bacteria. While Salmonella typhimurium and Legionella pneumophila normally reside in the vacuole, specific mutants (sifA and sdhA, respectively) that aberrantly enter the cytosol triggered Caspase-11, enhancing clearance of S. typhimurium sifA in vivo. This response did not require NLRP3, NLRC4, or ASC inflammasome pathways. Burkholderia species that naturally invade the cytosol also triggered Caspase-11, protecting mice from lethal challenge with B. thailandensis and B. pseudomallei. Thus, Caspase-11 is critical for surviving exposure to ubiquitous environmental pathogens.
PMCID: PMC3697099  PMID: 23348507
3.  miR-451 regulates dendritic cell cytokine responses to influenza infection1 
MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production.
PMCID: PMC3528339  PMID: 23169590
4.  Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses 
PLoS ONE  2013;8(9):e74863.
Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.
PMCID: PMC3779241  PMID: 24073225
5.  miRNA regulation of macrophage fusion into multinucleated giant cells 
Cellular fusion of macrophages into multinucleated giant cells is a distinguishing feature of the granulomatous response to inflammation, infection and foreign bodies (1). We observed a marked increase in fusion of macrophages genetically deficient in Dicer, an enzyme required for canonical miRNA biogenesis. Gene expression profiling of miRNA deficient macrophages revealed an up-regulation of the IL4 responsive fusion protein Tm7sf4, analyses identify miR-7a-1 as a negative regulator of macrophage fusion, functioning by directly targeting Tm7sf4 mRNA. miR-7a-1 is itself an IL4 responsive gene in macrophages, suggesting feedback control of cellular fusion. Collectively these data indicate that miR-7a-1 functions to regulate IL4 directed multinucleated giant cell formation.
PMCID: PMC3381877  PMID: 22661094
6.  A FOXO3/IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses 
Nature  2012;490(7420):421-425.
Antiviral responses must be tightly regulated to rapidly defend against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses1 and their transcription is regulated by a variety of transcription factors2; principal amongst these is the family of interferon regulatory factors (IRFs)3. The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.
PMCID: PMC3556990  PMID: 22982991
7.  Caspase-1 induced pyroptotic cell death 
Immunological reviews  2011;243(1):206-214.
Programmed cell death is a necessary part of development and tissue homeostasis enabling the removal of unwanted cells. In the setting of infectious disease, cells that have been commandeered by microbial pathogens become detrimental to the host. When macrophages and dendritic cells are compromised in this way, they can be lysed by pyroptosis, a cell death mechanism that is distinct from apoptosis and oncosis/necrosis. Pyroptosis is triggered by Caspase-1 after its activation by various inflammasomes, and results in lysis of the affected cell. Both pyroptosis and apoptosis are programmed cell death mechanisms, but are dependent on different caspases, unlike oncosis. Similar to oncosis, and unlike apoptosis, pyroptosis results in cellular lysis and release of the cytosolic contents to the extracellular space. This event is predicted to be inherently inflammatory, and additionally coincides with IL-1β and IL-18 secretion. We discuss the role of distinct inflammasomes, including NLRC4, NLRP3 and AIM2, as well as the role of the ASC focus in Caspase-1 signaling. We further review the importance of pyroptosis in vivo as a potent mechanism to clear intracellular pathogens.
PMCID: PMC3609431  PMID: 21884178
monocytes/macrophages; Toll-like Receptors/Pattern recognition receptors; Apoptosis/Autophagy; Pyroptosis; Caspase-1
8.  ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol–induced lipid body formation 
The transcription factor ATF3 inhibits lipid body formation in macrophages during atherosclerosis in part by dampening the expression of cholesterol 25-hydroxylase.
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. We demonstrate that macrophage lipid body formation can be induced by modified lipoproteins or by inflammatory Toll-like receptor agonists. We used an unbiased approach to study the overlap in these pathways to identify regulators that control foam cell formation and atherogenesis. An analysis method integrating epigenomic and transcriptomic datasets with a transcription factor (TF) binding site prediction algorithm suggested that the TF ATF3 may regulate macrophage foam cell formation. Indeed, we found that deletion of this TF results in increased lipid body accumulation, and that ATF3 directly regulates transcription of the gene encoding cholesterol 25-hydroxylase. We further showed that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell formation. Finally, deletion of ATF3 in Apoe−/− mice led to in vivo increases in foam cell formation, aortic 25-HC levels, and disease progression. These results define a previously unknown role for ATF3 in controlling macrophage lipid metabolism and demonstrate that ATF3 is a key intersection point for lipid metabolic and inflammatory pathways in these cells.
PMCID: PMC3328364  PMID: 22473958
9.  Generation of a Listeria vaccine strain by enhanced Caspase-1 activation 
European Journal of Immunology  2011;41(7):1934-1940.
The immunostimulatory properties conferred by vaccine adjuvants require Caspase-1 for processing of IL-1β and IL-18. Caspase-1 is activated in response to a breach of the cytosolic compartment by microbes and the process is initiated by intracellular pattern recognition receptors within inflammasomes. Listeria monocytogenes is detected in the cytosol by the NLRC4, NLRP3 and AIM2 inflammasomes. NLRC4 is activated by flagellin, and L. monocytogenes evades this detector by repressing flagellin expression. We generated an L. monocytogenes strain that was forced to express flagellin in the host cell cytosol. This strain hyperactivated Caspase-1 and was preferentially cleared via NLRC4 detection in an IL-1β/IL-18 independent manner. We also created a strain of L. monocytogenes with forced expression of another NLRC4 agonist, PrgJ from the Type III secretion system of S. typhimurium. Forced expression of flagellin or PrgJ resulted in attenuation, yet both strains conferred protective immunity in mice against lethal challenge with L. monocytogenes. This work is the first demonstration of specific targeting of the Caspase-1 activation pathway to generate a safe and potent L. monocytogenes based vaccine. Moreover, the attenuated strains with embedded flagellin or PrgJ adjuvants, represent attractive vectors for vaccines aimed at eliciting T cell responses.
PMCID: PMC3375905  PMID: 21538346
10.  Leishmania promotes its own virulence by inducing expression of the host immune inhibitory ligand CD200 
Cell host & microbe  2011;9(6):463-471.
Leishmania parasites infect macrophages, cells normally involved in innate defense against pathogens. L. amazonensis and L. major cause severe or mild disease, respectively, consistent with each parasite’s ability to survive within activated macrophages. The mechanisms underlying increased virulence of L. amazonensis are mostly unknown. We show that L. amazonensis promotes its own survival by inducing expression of CD200, an immunoregulatory molecule that inhibits macrophage activation. L. amazonensis does not form typical non-healing lesions in CD200−/− mice and cannot replicate in CD200−/− macrophages, an effect reversed by exogenous administration of soluble CD200-Fc. The less virulent L. major does not induce CD200 expression and forms small, self-healing lesions in both wild type and CD200−/− mice. Notably, CD200-Fc injection transforms the course of L. major infection to one resembling L. amazonensis, with large, non-healing lesions. CD200-dependent iNOS inhibition allows parasite growth in macrophages, identifying a mechanism for the increased virulence of L. amazonensis.
PMCID: PMC3118640  PMID: 21669395
11.  Systems Biology of Seasonal Influenza Vaccination in Humans 
Nature immunology  2011;12(8):786-795.
We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV −/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.
PMCID: PMC3140559  PMID: 21743478
12.  The NLRP3 Inflammasome Detects Encephalomyocarditis Virus and Vesicular Stomatitis Virus Infection▿ 
Journal of Virology  2011;85(9):4167-4172.
Inflammasomes are cytosolic protein complexes that regulate caspase-1 activation and the secretion of interleukin-1β (IL-1β) and IL-18. Several different inflammasome complexes have been identified, but the NLRP3 inflammasome is particularly notable because of its central role in diseases of inflammation. Recent work has demonstrated an essential role for the NLRP3 inflammasome in host defense against influenza virus. We show here that two other RNA viruses, encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV), activate the NLRP3 inflammasome in dendritic cells and macrophages through a mechanism requiring viral replication. Inflammasome activation in response to both viruses does not require MDA5 or RIG-I signaling. Despite the ability of the NLRP3 inflammasome to detect EMCV and VSV, wild-type and caspase-1-deficient mice were equally susceptible to infection with both viruses. These findings indicate that the NLRP3 inflammasome may be a common pathway for RNA virus detection, but its precise role in the host response may be variable.
PMCID: PMC3126243  PMID: 21289120
13.  Cutting Edge: Cytosolic Bacterial DNA Activates the Inflammasome via Aim2 
Pathogens are detected by pattern recognition receptors that, upon activation, orchestrate an appropriate immune response. The TLRs and the nucleotide-binding oligomerization domain-like receptors (NLRs) are prototypic pattern recognition receptors that detect extracellular and cytosolic pathogens, respectively. Listeria monocytogenes has both extracellular and cytosolic phases and is detected in the cytosol by members of the NLR family. These include two NLR members, NLRC4 and NLRP3, that, upon detection of cytosolic L. monocytogenes, induce the assembly of the inflammasome. Inflammasomes serve as platforms for the activation of the protease caspase 1, which mediates the processing and secretion of pro–IL-1β and pro–IL-18. We previously provided evidence that L. monocytogenes is also detected by a third inflammasome. We now use biochemical and genetic approaches to demonstrate that the third detector senses bacterial DNA and identify it as Aim2, a receptor that has previously been shown to detect viral DNA.
PMCID: PMC2993756  PMID: 20562263
14.  Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria 
Nature immunology  2010;11(12):1136-1142.
Macrophages mediate crucial innate immune responses via caspase-1-dependent processing and secretion of IL-1β and IL-18. While wild type Salmonella typhimurium infection is lethal to mice, a strain that persistently expresses flagellin was cleared by the cytosolic flagellin detection pathway via NLRC4 activation of caspase-1; however, this clearance was independent of IL-1β and IL-18. Instead, caspase-1 induced pyroptotic cell death, released bacteria from macrophages and exposed them to uptake and killing by reactive oxygen species in neutrophils. Similarly, caspase-1 cleared unmanipulated Legionella and Burkholderia by cytokine-independent mechanisms. This demonstrates for the first time that caspase-1 clears intracellular bacteria in vivo independent of IL-1β and IL-18, and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
PMCID: PMC3058225  PMID: 21057511
Caspase-1; pyroptosis; IL-1β Salmonella; cell death
15.  A systems view of host defense 
Nature biotechnology  2009;27(11):999-1001.
Large-scale perturbations unravel the complex networks of activated dendritic cells.
PMCID: PMC3076594  PMID: 19898453
16.  Toll-Like Receptor 2 (TLR2) Polymorphisms Are Associated with Reversal Reaction in Leprosy 
The Journal of infectious diseases  2008;197(2):253-261.
Leprosy is characterized by a spectrum of clinical manifestations that depend on the type of immune response against the pathogen. Patients may undergo immunological changes known as “reactional states” (reversal reaction and erythema nodosum leprosum) that result in major clinical deterioration. The goal of the present study was to assess the effect of Toll-like receptor 2 (TLR2) polymorphisms on susceptibility to and clinical presentation of leprosy.
Three polymorphisms in TLR2 (597C→T, 1350T→C, and a microsatellite marker) were analyzed in 431 Ethiopian patients with leprosy and 187 control subjects. The polymorphism-associated risk of developing leprosy, lepromatous (vs. tuberculoid) leprosy, and leprosy reactions was assessed by multivariate logistic regression models.
The microsatellite and the 597C→T polymorphisms both influenced susceptibility to reversal reaction. Although the 597T allele had a protective effect (odds ratio [OR], 0.34 [95% confidence interval {CI}, 0.17–0.68]; P = .002 under the dominant model), homozygosity for the 280-bp allelic length of the microsatellite strongly increased the risk of reversal reaction (OR, 5.83 [95% CI, 1.98–17.15]; P = .001 under the recessive model). These associations were consistent among 3 different ethnic groups.
These data suggest a significant role for TLR-2 in the occurrence of leprosy reversal reaction and provide new insights into the immunogenetics of the disease.
PMCID: PMC3077295  PMID: 18177245
17.  Taming Data 
Cell host & microbe  2008;4(4):312-313.
A challenge in systems-level investigations of the immune response is the principled integration of disparate data sets for constructing predictive models. InnateDB (Lynn et al., 2008;, a publicly available, manually curated database of experimentally verified molecular interactions and pathways involved in innate immunity, is a powerful new resource that facilitates such integrative systems-level analyses.
PMCID: PMC3074406  PMID: 18854235
18.  Characterizing the connectivity of poly-ubiquitin chains by selected reaction monitoring mass spectrometry† 
Molecular bioSystems  2010;6(10):2004-2014.
Protein ubiquitination is an essential post-translational modification (PTM) involved in the regulation of a variety of cellular functions, including transcription and protein degradation. Proteins can be both mono- or poly-ubiquitinated. Poly-ubiquitin chains vary in the manner by which the ubiquitin proteins are linked and their total length. Different poly-ubiquitin structures are thought to specify different fates for the target protein but the correlation between poly-ubiquitin structures and their specific cellular function(s) is not well understood. We have developed a set of specific and quantitative targeted mass spectrometry assays to determine the frequency of different types of inter-ubiquitin linkages in poly-ubiquitin chains relative to the total ubiquitin concentration. We chemically synthesized heavy isotope labeled reference peptides that represent the products generated by tryptic digestion of the known forms of inter-ubiquitin links for the yeast Saccharomyces cerevisiae and human, in addition to all peptides from tryptic digestion of a single ubiquitin molecule for these two species. We used these peptides to develop optimized Selected Reaction Monitoring (SRM) assays for their unambiguous detection in biological samples. We used these assays to profile the frequency of the different types of inter-ubiquitin linkages in a mixture of in vitro assembled human poly-ubiquitin chains and 15 isolated poly-ubiquitinated proteins from S. cerevisiae. We then applied the method to detect toxin induced changes in the poly-ubiquitination profile in complex and enriched protein samples.
PMCID: PMC3057100  PMID: 20694217
19.  Memory T Cell RNA Rearrangement Programmed by Heterogeneous Nuclear Ribonucleoprotein hnRNPLL 
Immunity  2008;29(6):863-875.
Differentiation of memory cells involves DNA-sequence changes in B lymphocytes but is less clearly defined in T cells. RNA rearrangement is identified here as a key event in memory T cell differentiation by analysis of a mouse mutation that altered the proportions of naive and memory T cells and crippled the process of Ptprc exon silencing needed to generate CD45RO in memory T cells. A single substitution in a memory-induced RNA-binding protein, hnRNPLL, destabilized an RNA-recognition domain that bound with micromolar affinity to RNA containing the Ptprc exon-silencing sequence. Hnrpll mutation selectively diminished T cell accumulation in peripheral lymphoid tissues but not proliferation. Exon-array analysis of Hnrpll mutant naive and memory T cells revealed an extensive program of alternative mRNA splicing in memory T cells, coordinated by hnRNPLL. A remarkable overlap with alternative splicing in neural tissues may reflect a co-opted strategy for diversifying memory T cells.
PMCID: PMC3057111  PMID: 19100700
20.  A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm 
mBio  2011;2(1):e00325-10.
The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past—including the intense focus on individual genes and proteins typical of molecular biology—have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm.
PMCID: PMC3034460  PMID: 21285433
21.  Staphylococcus aureus evades the lysozyme-based digestion of peptidoglycan that links phagocytosis and macrophage IL-1β secretion 
Cell host & microbe  2010;7(1):38.
IL-1β produced by phagocytes is important for protection against Staphylococcus aureus. Secretion of this cytokine requires both activation of a transcriptional signal to stimulate production of pro-IL-1β, and a second signal to stimulate processing by inflammasome complexes and release of the mature cytokine. We show here that phagocytosis and lysozyme-based degradation of bacterial cell walls are functionally coupled to activation of NLRP3 inflammasomes and secretion of IL-1β in response to live S. aureus and to S. aureus peptidoglycan. Further a S. aureus enzyme, peptidoglycan O-acetyl transferase A, previously demonstrated to make cell wall peptidoglycan resistant to lysozyme strongly suppresses inflammasome activation and inflammation in vitro and in vivo. This is the first demonstration of a case whereby a bacterium specifically subverts IL-1β secretion through chemical modification of its cell wall peptidoglycan.
PMCID: PMC2818986  PMID: 20114027
22.  A systems biology approach to understanding atherosclerosis 
EMBO molecular medicine  2010;2(3):79-89.
Atherosclerosis, a chronic inflammatory disease of the vascular system, presents significant challenges to developing effective molecular diagnostics and novel therapies. A systems biology approach integrating data from large-scale measurements (e.g., transcriptomics, proteomics, and genomics) is successfully contributing to deciphering regulatory networks underlying the response of many different cellular systems to perturbations. Such a network analysis strategy using pathway information and data from multiple measurement platforms, tissues, and species is a promising approach to elucidate the mechanistic underpinnings of complex diseases. Here, we present our views on the contributions that a systems approach can bring to the study of atherosclerosis, propose ways to tackle the complexity of the disease in a systems manner and review recent systems-level studies of the disease.
PMCID: PMC2992755  PMID: 20201031
atherosclerosis; systems biology; network analysis
23.  Multiple Nod-Like Receptors Activate Caspase 1 during Listeria monocytogenes Infection1,2 
Listeria monocytogenes escapes from the phagosome of macrophages and replicates within the cytosolic compartment. The macrophage responds to L. monocytogenes through detection pathways located on the cell surface (TLRs) and within the cytosol (Nod-like receptors) to promote inflammatory processes aimed at clearing the pathogen. Cytosolic L. monocytogenes activates caspase 1, resulting in post-translational processing of the cytokines IL-1β and IL-18 as well as caspase 1-dependent cell death (pyroptosis). We demonstrate that the presence of L. monocytogenes within the cytosolic compartment induces caspase 1 activation through multiple Nod-like receptors, including Ipaf and Nalp3. Flagellin expression by cytosolic L. monocytogenes was detected through Ipaf in a dose-dependent manner. Concordantly, detection of flagellin promoted bacterial clearance in a murine infection model. Finally, we provide evidence that suggests cytosolic L. monocytogenes activates caspase 1 through a third pathway, which signals through the adaptor protein ASC. Thus, L. monocytogenes activates caspase 1 in macrophages via multiple pathways, all of which detect the presence of bacteria within the cytosol.
PMCID: PMC2991040  PMID: 18490757
24.  Genome-wide histone acetylation data improve prediction of mammalian transcription factor binding sites 
Bioinformatics  2010;26(17):2071-2075.
Motivation: Histone acetylation (HAc) is associated with open chromatin, and HAc has been shown to facilitate transcription factor (TF) binding in mammalian cells. In the innate immune system context, epigenetic studies strongly implicate HAc in the transcriptional response of activated macrophages. We hypothesized that using data from large-scale sequencing of a HAc chromatin immunoprecipitation assay (ChIP-Seq) would improve the performance of computational prediction of binding locations of TFs mediating the response to a signaling event, namely, macrophage activation.
Results: We tested this hypothesis using a multi-evidence approach for predicting binding sites. As a training/test dataset, we used ChIP-Seq-derived TF binding site locations for five TFs in activated murine macrophages. Our model combined TF binding site motif scanning with evidence from sequence-based sources and from HAc ChIP-Seq data, using a weighted sum of thresholded scores. We find that using HAc data significantly improves the performance of motif-based TF binding site prediction. Furthermore, we find that within regions of high HAc, local minima of the HAc ChIP-Seq signal are particularly strongly correlated with TF binding locations. Our model, using motif scanning and HAc local minima, improves the sensitivity for TF binding site prediction by ∼50% over a model based on motif scanning alone, at a false positive rate cutoff of 0.01.
Availability: The data and software source code for model training and validation are freely available online at
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2922897  PMID: 20663846
25.  Age-Dependent Signature of Metallothionein Expression in Primary CD4 T Cell Responses Is Due to Sustained Zinc Signaling 
Rejuvenation research  2008;11(6):1001-1011.
The ability to mount adaptive immune responses to vaccinations and viral infections declines with increasing age. To identify mechanisms leading to immunosenescence, primary CD4 T cell responses were examined in 60- to 75-year-old individuals lacking overt functional defects. Transcriptome analysis indicated a selective defect in zinc homeostasis. CD4 T cell activation was associated with zinc influx via the zinc transporter Zip6, leading to increased free cytoplasmic zinc and activation of negative feedback loops, including the induction of zinc-binding metallothioneins. In young adults, activation-induced cytoplasmic zinc concentrations declined after 2 days to below prestimulation levels. In contrast, activated naïve CD4 T cells from older individuals failed to downregulate cytoplasmic zinc, resulting in excessive induction of metallothioneins. Activation-induced metallothioneins regulated the redox state in activated T cells and accounted for an increased proliferation of old CD4 T cells, suggesting that regulation of T cell zinc homeostasis functions as a compensatory mechanism to preserve the replicative potential of naïve CD4 T cells with age.
PMCID: PMC2848531  PMID: 19072254

Results 1-25 (56)