PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Age-dependent modulation of vascular niches for haematopoietic stem cells 
Nature  2016;532(7599):380-384.
Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells1–6. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here, we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and PDGFRβ-positive perivascular cells, arteriole formation, and elevation of cellular stem cell factor levels. While endothelial hypoxia-inducible factor signalling promotes some of these aspects, it fails to enhance vascular niche function because of lacking arterialization and expansion of PDGFRβ-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings argue that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.
doi:10.1038/nature17638
PMCID: PMC5035541  PMID: 27074508
Arteries; endothelial cells; Notch; Dll4; HIF; haematopoiesis; ageing
2.  Regulation of tissue morphogenesis by endothelial cell-derived signals 
Trends in cell biology  2014;25(3):148-157.
Summary
Endothelial cells form an extensive network of blood vessels that has numerous essential functions in the vertebrate body. In addition to their well-established role as a versatile transport network, blood vessels can induce organ formation or direct growth and differentiation processes by providing signals in a paracrine (angiocrine) fashion. Tissue repair also requires the local restoration of vasculature. Endothelial cells are emerging as important signaling centers that coordinate regeneration and help to prevent deregulated, disease-promoting processes. Vascular cells are also part of stem cell niches and play key roles in hematopoiesis, bone formation and neurogenesis. Here, we will review these newly identified roles of endothelial cells in the regulation of organ morphogenesis, maintenance and regeneration.
doi:10.1016/j.tcb.2014.11.007
PMCID: PMC4943524  PMID: 25529933
Endothelial cells; angiogenesis; lung; liver; bone marrow; organ morphogenesis; angiocrine signaling; vascular niche
3.  Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone 
Nature  2014;507(7492):323-328.
Summary
The mammalian skeletal system harbours a hierarchical system of mesenchymal stem cells, osteoprogenitors and osteoblasts sustaining lifelong bone formation. Osteogenesis is indispensable for the homeostatic renewal of bone as well as regenerative fracture healing, but these processes frequently decline in ageing organisms leading to loss of bone mass and increased fracture incidence. There is evidence indicating that the growth of blood vessels in bone and osteogenesis are coupled, but relatively little is known about the underlying cellular and molecular mechanisms. Here we identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties. These vessels are found in specific locations, mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors, and couple angiogenesis to osteogenesis. The abundance of these vessels and associated osteoprogenitors was strongly reduced in bone from aged animals, which was pharmacologically reversible to restore bone mass.
doi:10.1038/nature13145
PMCID: PMC4943525  PMID: 24646994
Bone formation; endothelial cells; ageing; hypoxia-inducible factor
4.  Endothelial Notch activity promotes angiogenesis and osteogenesis in bone 
Nature  2014;507(7492):376-380.
Blood vessel growth in the skeletal system and osteogenesis appear coupled suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells1,2. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here, we show that vascular growth in bone involves a specialised, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours3,4. Endothelial cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae, and decreased bone mass. Based on a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralisation, chondrocyte maturation, the formation of trabeculae, and osteoprogenitor numbers in endothelial cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.
doi:10.1038/nature13146
PMCID: PMC4943529  PMID: 24647000
Bone formation; endothelial cells; Notch; Dll4; Noggin
5.  Regulation of signaling interactions and receptor endocytosis in growing blood vessels 
Cell Adhesion & Migration  2014;8(4):366-377.
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
doi:10.4161/19336918.2014.970010
PMCID: PMC4594521  PMID: 25482636
endocytosis; endothelial cells; Eph; ephrin; mural cells; receptor
6.  Regulation of monocyte cell fate by blood vessels mediated by Notch signalling 
Nature Communications  2016;7:12597.
A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.
Circulating Ly6Clo monocytes are thought to be derived from Ly6Chi subset. Here the authors show that Notch signalling is activated in Ly6Clo cells and is required for their differentiation, and that Notch ligands that initiate this signalling are provided by a subset of endothelial cells.
doi:10.1038/ncomms12597
PMCID: PMC5013671  PMID: 27576369
7.  Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells 
Nature Communications  2016;7:12422.
Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions.
Pericytes and vascular smooth muscle cells are crucial for functional blood vessels, but the developmental sources of these cells are incompletely understood. Here, the authors show that endocardial endothelial cells give rise to cardiac mural cells, which are controlled by Wnt signalling.
doi:10.1038/ncomms12422
PMCID: PMC4990645  PMID: 27516371
8.  Activation of endothelial β-catenin signaling induces heart failure 
Scientific Reports  2016;6:25009.
Activation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment. Electron microscopic analysis revealed dilatation of T-tubules and degeneration of mitochondria in cardiomyocytes of Bmx/CA mice, which are similar to the changes observed in mice with decreased neuregulin-ErbB signaling. Endothelial expression of Nrg1 and cardiac ErbB signaling were suppressed in Bmx/CA mice. The cardiac dysfunction of Bmx/CA mice was ameliorated by administration of recombinant neuregulin protein. These results collectively suggest that sustained activation of Wnt/β-catenin signaling in endothelial cells might be a cause of heart failure through suppressing neuregulin-ErbB signaling, and that the Wnt/β-catenin/NRG axis in cardiac endothelial cells might become a therapeutic target for heart failure.
doi:10.1038/srep25009
PMCID: PMC4857119  PMID: 27146149
9.  C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development 
PLoS ONE  2016;11(4):e0154174.
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.
doi:10.1371/journal.pone.0154174
PMCID: PMC4844105  PMID: 27111087
10.  Spatial regulation of VEGF receptor endocytosis in angiogenesis 
Nature cell biology  2013;15(3):249-260.
Activities as diverse as migration, proliferation and patterning occur simultaneously and in a coordinated fashion during tissue morphogenesis. In the growing vasculature, the formation of motile, invasive and filopodia-carrying endothelial sprouts is balanced with the stabilisation of blood-transporting vessels. Here, we show that sprouting endothelial cells in the retina have high rates of VEGF uptake, VEGF receptor endocytosis and turnover. These internalisation processes are opposed by atypical protein kinase C activity in more stable and mature vessels. aPKC phosphorylates Dab2, a clathrin-associated sorting protein that, together with the transmembrane protein ephrin-B2 and the cell polarity regulator PAR-3, enables VEGF receptor endocytosis and downstream signal transduction. Accordingly, VEGF receptor internalisation and the angiogenic growth of vascular beds are defective in loss-of-function mice lacking key components of this regulatory pathway. Our work uncovers how vessel growth is dynamically controlled by local VEGFR endocytosis and the activity of cell polarity proteins.
doi:10.1038/ncb2679
PMCID: PMC3901019  PMID: 23354168
11.  Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension 
Science translational medicine  2015;7(308):308ra159.
Excess and ectopic smooth muscle cells (SMCs) are central to cardiovascular disease pathogenesis, but underlying mechanisms are poorly defined. For instance, pulmonary hypertension (PH) or elevated pulmonary artery blood pressure is a devastating disease with distal extension of smooth muscle to normally unmuscularized pulmonary arterioles. We identify novel SMC progenitors that are located at the pulmonary arteriole muscular-unmuscular border and express both SMC markers and the undifferentiated mesenchyme marker platelet-derived growth factor receptor-β (PDGFR-β). We term these cells “primed” because in hypoxia-induced PH, they express the pluripotency factor Kruppel-like factor 4 (KLF4), and in each arteriole, one of them migrates distally, dedifferentiates, and clonally expands, giving rise to the distal SMCs. Furthermore, hypoxia-induced expression of the ligand PDGF-B regulates primed cell KLF4 expression, and enhanced PDGF-B and KLF4 levels are required for distal arteriole muscularization and PH. Finally, in PH patients, KLF4 is markedly up-regulated in pulmonary arteriole smooth muscle, especially in proliferating SMCs. In sum, we have identified a pool of SMC progenitors that are critical for the pathogenesis of PH, and perhaps other vascular disorders, and therapeutic strategies targeting this cell type promise to have profound implications.
doi:10.1126/scitranslmed.aaa9712
PMCID: PMC4629985  PMID: 26446956
12.  Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium 
Nature Communications  2016;7:10960.
The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function.
The Akt pathway integrates multiple signals, but whether it affects vasculature function is debatable. Here the authors show that Akt pathway shutdown in adult mouse endothelium causes destabilization of vasculature leading to cardiac and retinal dysfunction, due to decreased levels of Jagged1 and impaired Notch signaling.
doi:10.1038/ncomms10960
PMCID: PMC4793084  PMID: 26971877
13.  Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis 
Oncotarget  2016;7(5):6088-6104.
Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial Cdk5 inhibition in angiogenesis and elucidate the underlying mechanism in order to judge the potential of Cdk5 as a novel anti-angiogenic and anti-cancer target. By the use of endothelial-specific Cdk5 knockout mouse models and various endothelial and tumor cell based assays including human tumor xenograft models, we show that endothelial-specific knockdown of Cdk5 results in excessive but non-productive angiogenesis during development but also in tumors, which subsequently leads to inhibition of tumor growth. As Cdk5 inhibition disrupted Notch function by reducing the generation of the active Notch intracellular domain (NICD) and Cdk5 modulates Notch-dependent endothelial cell proliferation and sprouting, we propose that the Dll4/Notch driven angiogenic signaling hub is an important and promising mechanistic target of Cdk5. In fact, Cdk5 inhibition can sensitize tumors to conventional anti-angiogenic treatment as shown in tumor xenograft models. In summary our data set the stage for Cdk5 as a drugable target to inhibit Notch-driven angiogenesis condensing the view that Cdk5 is a promising target for cancer therapy.
doi:10.18632/oncotarget.6842
PMCID: PMC4868742  PMID: 26755662
Cdk5; angiogenesis; cancer; Notch
14.  KLF4 is a key determinant in the development and progression of cerebral cavernous malformations 
EMBO Molecular Medicine  2015;8(1):6-24.
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss‐of‐function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial‐to‐mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFβ/BMP‐dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3‐MEK5‐ERK5‐MEF2 signaling axis that induces a strong increase in Kruppel‐like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1‐null ECs. KLF4 promotes TGFβ/BMP signaling through the production of BMP6. Importantly, in endothelial‐specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.
doi:10.15252/emmm.201505433
PMCID: PMC4718159  PMID: 26612856
CCM; EndMT; endothelial cells; KLF4; TGFβ‐BMP; Cardiovascular System; Genetics, Gene Therapy & Genetic Disease; Vascular Biology & Angiogenesis
15.  Ephrin-Bs Drive Junctional Downregulation and Actin Stress Fiber Disassembly to Enable Wound Re-epithelialization 
Cell Reports  2015;13(7):1380-1395.
Summary
For a skin wound to successfully heal, the cut epidermal-edge cells have to migrate forward at the interface between scab and healthy granulation tissue. Much is known about how lead-edge cells migrate, but very little is known about the mechanisms that enable active participation by cells further back. Here we show that ephrin-B1 and its receptor EphB2 are both upregulated in vivo, just for the duration of repair, in the first 70 or so rows of epidermal cells, and this signal leads to downregulation of the molecular components of adherens and tight (but not desmosomal) junctions, leading to loosening between neighbors and enabling shuffle room among epidermal cells. Additionally, this signaling leads to the shutdown of actomyosin stress fibers in these same epidermal cells, which may act to release tension within the wound monolayer. If this signaling axis is perturbed, then disrupted healing is a consequence in mouse and man.
Graphical Abstract
Highlights
•Ephrin-B/EphBs are upregulated in the migrating wound epidermis in mouse and man•Ephrin-B/EphB signaling drives junction loosening, thus enabling re-epithelialization•Ephrin-B/EphB signaling also leads to dissolution of stress fibers and tension release•In human chronic wounds ephrin-Bs are misregulated and may be a therapeutic target
Epithelial migration is essential for skin wound healing. Nunan et al. show that ephrin-B1 is upregulated for the duration of repair and drives both loosening of adherens and tight junctions and release of actomyosin tension to enable re-epithelialization. Misregulation of Eph/ephrin-B signaling in mouse and man considerably hinders healing.
doi:10.1016/j.celrep.2015.09.085
PMCID: PMC4660216  PMID: 26549443
16.  S6K1 controls pancreatic β cell size independently of intrauterine growth restriction 
The Journal of Clinical Investigation  2015;125(7):2736-2747.
Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of β cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased β cell growth, intrauterine growth restriction (IUGR), and impaired placental development. IUGR is a common complication of human pregnancy that limits the supply of oxygen and nutrients to the developing fetus, leading to diminished embryonic β cell growth and the onset of T2DM later in life. However, restoration of placental development and the rescue of IUGR by tetraploid embryo complementation did not restore β cell size or insulin levels in S6K1–/– embryos, suggesting that loss of S6K1 leads to an intrinsic β cell lesion. Consistent with this hypothesis, reexpression of S6K1 in β cells of S6K1–/– mice restored embryonic β cell size, insulin levels, glucose tolerance, and RPS6 phosphorylation, without rescuing IUGR. Together, these data suggest that a nutrient-mediated reduction in intrinsic β cell S6K1 signaling, rather than IUGR, during fetal development may underlie reduced β cell growth and eventual development of T2DM later in life.
doi:10.1172/JCI77030
PMCID: PMC4563673  PMID: 26075820
17.  Endothelial Jagged1 promotes solid tumor growth through both pro-angiogenic and angiocrine functions 
Oncotarget  2015;6(27):24404-24423.
Angiogenesis is an essential process required for tumor growth and progression. The Notch signaling pathway has been identified as a key regulator of the neo-angiogenic process. Jagged-1 (Jag1) is a Notch ligand required for embryonic and retinal vascular development, which direct contribution to the regulation of tumor angiogenesis remains to be fully characterized.
The current study addresses the role of endothelial Jagged1-mediated Notch signaling in the context of tumoral angiogenesis in two different mouse tumor models: subcutaneous Lewis Lung Carcinoma (LLC) tumor transplants and the autochthonous Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP).
The role of endothelial Jagged1 in tumor growth and neo-angiogenesis was investigated with endothelial-specific Jag1 gain- and loss-of-function mouse mutants (eJag1OE and eJag1cKO). By modulating levels of endothelial Jag1, we observed that this ligand regulates tumor vessel density, branching, and perivascular maturation, thus affecting tumor vascular perfusion. The pro-angiogenic function is exerted by its ability to positively regulate levels of Vegfr-2 while negatively regulating Vegfr-1. Additionally, endothelial Jagged1 appears to exert an angiocrine function possibly by activating Notch3/Hey1 in tumor cells, promoting proliferation, survival and epithelial-to-mesenchymal transition (EMT), potentiating tumor development. These findings provide valuable mechanistic insights into the role of endothelial Jagged1 in promoting solid tumor development and support the notion that it may constitute a promising target for cancer therapy.
PMCID: PMC4695194  PMID: 26213336
Jagged1; Notch; TRAMP; tumor angiogenesis; angiocrine
18.  Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells 
Nature cell biology  2014;16(11):1045-1056.
The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment.
doi:10.1038/ncb3045
PMCID: PMC4298702  PMID: 25283993
19.  Arteries are formed by vein-derived endothelial tip cells 
Nature Communications  2014;5:5758.
Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.
Sprouting of new blood vessels depends on the migration of endothelial tip cells into surrounding tissue. Here the authors reveal the existence of a distinct migratory signalling circuit that guides endothelial cells from developing veins to the leading tip position in developing arteries.
doi:10.1038/ncomms6758
PMCID: PMC4275597  PMID: 25502622
20.  Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid 
DHA diols produced by Müller cells suppress Notch activation in endothelial cells, thereby promoting retinal angiogenesis.
Cytochrome P450 (CYP) epoxygenases generate bioactive lipid epoxides which can be further metabolized to supposedly less active diols by the soluble epoxide hydrolase (sEH). As the role of epoxides and diols in angiogenesis is unclear, we compared retinal vasculature development in wild-type and sEH−/− mice. Deletion of the sEH significantly delayed angiogenesis, tip cell, and filopodia formation, a phenomenon associated with activation of the Notch signaling pathway. In the retina, sEH was localized in Müller glia cells, and Müller cell–specific sEH deletion reproduced the sEH−/− retinal phenotype. Lipid profiling revealed that sEH deletion decreased retinal and Müller cell levels of 19,20–dihydroxydocosapentaenoic acid (DHDP), a diol of docosahexenoic acid (DHA). 19,20-DHDP suppressed endothelial Notch signaling in vitro via inhibition of the γ-secretase and the redistribution of presenilin 1 from lipid rafts. Moreover, 19,20-DHDP, but not the parent epoxide, was able to rescue the defective angiogenesis in sEH−/− mice as well as in animals lacking the Fbxw7 ubiquitin ligase, which demonstrate strong basal activity of the Notch signaling cascade. These studies demonstrate that retinal angiogenesis is regulated by a novel form of neuroretina–vascular interaction involving the sEH-dependent generation of a diol of DHA in Müller cells.
doi:10.1084/jem.20131494
PMCID: PMC3920554  PMID: 24446488
21.  Selective αv integrin depletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs 
Nature medicine  2013;19(12):10.1038/nm.3282.
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl4-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.
doi:10.1038/nm.3282
PMCID: PMC3855865  PMID: 24216753
22.  Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy 
The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.
doi:10.1172/JCI68897
PMCID: PMC3904604  PMID: 24430181
23.  Formation of the Collateral Circulation is Regulated by Vascular Endothelial Growth Factor-A and A Disintegrin and Metalloprotease Family Members 10 and 17 
Circulation research  2012;111(12):1539-1550.
Rationale
The density of native (pre-existing) collaterals varies widely and is a significant determinant of variation in severity of stroke, myocardial infarction and peripheral artery disease. However, little is known about mechanisms responsible for formation of the collateral circulation in healthy tissues.
Objective
We previously found that variation in VEGF expression causes differences in collateral density of newborn and adult mice. Herein, we sought to determine mechanisms of collaterogenesis in the embryo and the role of VEGF in this process.
Methods and Results
Pial collaterals begin forming between embryonic day (E) 13.5 and 14.5 as sprout-like extensions from arterioles of existing cerebral artery trees. Global VEGF-A overexpressing mice (Vegf hi/+) formed more—and Vegf lo/+ formed fewer—collaterals during embryogenesis, in association with differences in vascular patterning. Conditional global reduction of Vegf or Flk1 only during collaterogenesis significantly reduced collateral formation, but now without affecting vascular patterning, and the effects remained in adulthood. Endothelial-specific Vegf reduction had no effect on collaterogenesis. Endothelial-specific reduction of a disintegrin-and-metalloprotease-domain-10 (Adam10) and inhibition of γ-secretase increased collateral formation, consistent with their roles in VEGF-induced Notch1 activation and suppression of “pro-sprouting” signals. Endothelial-specific knockdown of Adam17 reduced collateral formation, consistent with its roles in endothelial cell migration and embryonic vascular stabilization, but not in activation of ligand-bound Notch1. These effects also remained in adulthood.
Conclusions
Formation of pial collaterals occurs during a narrow developmental window via a sprouting angiogenesis-like mechanism, requires paracrine VEGF-stimulation of Flk1-Notch signaling, and adult collateral number is dependent on embryonic collaterogenesis.
doi:10.1161/CIRCRESAHA.112.279109
PMCID: PMC3518639  PMID: 22965144
collateral; angiogenesis; VEGF; ADAM; embryo
24.  EphB Signaling Directs Peripheral Nerve Regeneration through Sox2-Dependent Schwann Cell Sorting 
Cell  2010;143(1):10.1016/j.cell.2010.08.039.
SUMMARY
The peripheral nervous system has astonishing regenerative capabilities in that cut nerves are able to reconnect and re-establish their function. Schwann cells are important players in this process, during which they dedifferentiate to a progenitor/stem cell and promote axonal regrowth. Here, we report that fibroblasts also play a key role. Upon nerve cut, ephrin-B/EphB2 signaling between fibroblasts and Schwann cells results in cell sorting, followed by directional collective cell migration of Schwann cells out of the nerve stumps to guide regrowing axons across the wound. Mechanistically, we find that cell-sorting downstream of EphB2 is mediated by the stemness factor Sox2 through N-cadherin relocalization to Schwann cell-cell contacts. In vivo, loss of EphB2 signaling impaired organized migration of Schwann cells, resulting in misdirected axonal regrowth. Our results identify a link between Ephs and Sox proteins, providing a mechanism by which progenitor cells can translate environmental cues to orchestrate the formation of new tissue.
doi:10.1016/j.cell.2010.08.039
PMCID: PMC3826531  PMID: 20869108
25.  Sox17 is indispensable for acquisition and maintenance of arterial identity 
Nature Communications  2013;4:2609.
The functional diversity of the arterial and venous endothelia is regulated through a complex system of signalling pathways and downstream transcription factors. Here we report that the transcription factor Sox17, which is known as a regulator of endoderm and hemopoietic differentiation, is selectively expressed in arteries, and not in veins, in the mouse embryo and in mouse postnatal retina and adult. Endothelial cell-specific inactivation of Sox17 in the mouse embryo is accompanied by a lack of arterial differentiation and vascular remodelling that results in embryo death in utero. In mouse postnatal retina, abrogation of Sox17 expression in endothelial cells leads to strong vascular hypersprouting, loss of arterial identity and large arteriovenous malformations. Mechanistically, Sox17 acts upstream of the Notch system and downstream of the canonical Wnt system. These data introduce Sox17 as a component of the complex signalling network that orchestrates arterial/venous specification.
The transcription factor Sox17 is required for the development of the vasculature in vertebrates. Here Corada et al. show that Sox17 acts downstream of Wnt signalling and upstream of Notch signalling in the regulation of artery and vein differentiation in mice.
doi:10.1038/ncomms3609
PMCID: PMC3826640  PMID: 24153254

Results 1-25 (41)