Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("abimbola, M.")
1.  The retinal pigment epithelium undergoes massive apoptosis during early differentiation and pigmentation of the optic cup 
Molecular Vision  2011;17:989-996.
The aim of our work was to study apoptosis during the development of the retinal pigment epithelium (RPE) in mice between embryonic day (E) 10.5 and E12.5 and to examine a possible link between apoptosis and pigmentation.
We collected mouse embryos at E10.5, E11.5, and E12.5 and labeled apoptotic cells in 5-µm paraffin sections, using the terminal deoxynucleotidyl transferase dUTP nick end labeling technique. We counted the total number of cells and the number of apoptotic cells in the early developing RPE and calculated the percentage of apoptosis at each stage.
In the C57BL/6J mouse, 17% of the RPE cells were apoptotic at E10.5 compared to 0.9% at E12.5. At E11.5, three-quarters of the RPE cells began to pigment, and apoptotic cells were located mostly in the nonpigmented part. In contrast, in the BALB/c mouse (tyrosinase-deficient) and pJ mouse (carrying mutations in the p gene) hypopigmented strains, the RPE contained significantly fewer apoptotic cells (7.5% and 10.1%, respectively) at E10.5 than controls. Subsequently at E11.5 and E12.5, the two hypopigmented strains displayed different apoptotic patterns; the BALB/c RPE had a similar percentage of apoptotic cells to controls (1.5% and 1.1%, respectively, for BALB/c versus 3.0% and 0.9%, respectively, for C57BL/6J), whereas the pJ RPE contained significantly more apoptosis (7.5% and 3.5%, respectively). Overall we observed differences in the evolution of the relative total number of RPE cells between the three strains.
Apoptosis is a main event during the first stages of normal RPE development, indicating an essential role during RPE differentiation. Moreover, the early apoptotic pattern and possibly the whole early development of the RPE is different between hypopigmented and pigmented strains, as well as between BALB/c and pJ mice. This suggests the existence of regulatory and developmental differences with a more complex origin than just differing pigmentation levels.
PMCID: PMC3084227  PMID: 21541273
2.  New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy 
Journal of Medical Genetics  2007;44(3):e70.
The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease.
Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis.
Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner.
This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane.
PMCID: PMC2598027  PMID: 17287362
3.  ETS-1 and ETS-2 are upregulated in a transgenic mouse model of pigmented ocular neoplasm 
Molecular Vision  2008;14:1912-1928.
Choroidal melanoma is the most common primary malignant ocular tumor in human adults. Relevant mouse models of human uveal melanoma still remain to be developed. We have studied the transgenic mouse strain, Tyrp-1-TAg, to try to gain insight into possible molecular mechanisms common to pigmented ocular neoplasms occurring spontaneously in the eyes of these mice and human choroidal melanoma. The role of two members of the ETS (E26 avian leukemia oncogene) family of transcription factors, ETS-1 and ETS-2, has been investigated in many cancers but has not yet been studied in ocular tumors.
This is the first study describing the production and distribution of ETS-1 and ETS-2 mRNAs and proteins using in situ hybridization and immunohistochemistry in murine ocular tissue sections of normal control eyes and tumoral eyes from mice of the same age. Using semi-quantitative reverse-transcription polymerase chain reaction (RT–PCR) and western blots experiments, we compared changes in ETS-1 and ETS-2 expression, their protein levels, and the regulation of some of their target gene expressions at different stages of the ocular tumoral progression in the transgenic mouse model, Tyrp-1-TAg, with those in normal eyes from control mice of the same age.
In normal control adult mouse eyes, ETS-1 was mostly present in the nuclei of all neuroretinal layers whereas ETS-2 was mostly localized in the cytosol of the cell bodies of these layers with a smaller amount present in the nuclei. Both were found in the retinal pigmentary epithelium (RPE). ETS-1 and ETS-2 mRNA and protein levels were much higher in the ocular tissues of Tyrp-1-TAg mice than in control ocular tissues from wild-type mice. This upregulation was correlated with tumor progression. We also demonstrated upregulation of ETS-1 and ETS-2 target expressions in Tyrp-1-TAg mice when comparing with the same target expressions in control mice.
Our findings suggest that ETS-1 and ETS-2 are upregulated in ocular tumors derived from the retinal epithelium and may be involved in one or several signaling pathways that activate the expression of a set of genes involved in ocular tumor progression such as those encoding ICAM-1 (intercellular adhesion molecule-1), PAI-1 (Plasminogen activator inhibitor-1), MCP-1 (monocyte chemoattractant protein-1) and p16 (Cyclin dependent kinase inhibitor 2A).
PMCID: PMC2573735  PMID: 18958307
4.  Differential regulation of Dlg1, Scrib, and Lgl1 expression in a transgenic mouse model of ocular cancer 
Molecular Vision  2008;14:2390-2403.
Discs large (dlg), scribble (scrib), and lethal giant larvae (lgl) are major suppressor genes in Drosophila melanogaster. They encode proteins that regulate cell polarity and cell proliferation in Drosophila and mammals. However, their basic oncogenic roles have not yet been established in mouse epithelial ocular cancer. We evaluated the potential implication of these proteins in tumorigenesis of adenocarcinomas originating from the retinal pigmented epithelium of the Trp1/Tag transgenic mouse model. We examined the changes in the distribution and levels of these proteins in mouse ocular tissues from the Trp1/Tag mouse model.
The expression patterns of theses genes and their corresponding proteins in normal mouse ocular tissues were studied by in situ hibridization and immunohistofluorescence experiments. In addition, variations in mRNA and proteins levels and protein distributions for Dlg1, Scrib, and Lgl1 were analyzed in the ocular tissues from Trp1/Tag transgenic mouse model by reverse transcription polymerase chain reaction (RT–PCR), western blot analysis, and immunohistofluorescence.
We found that mouse Dlg1, Scrib, and Lgl1 are widely distributed in normal ocular tissues, particularly in retinal neurons. We found that the three proteins are mislocalized in retinal layers during ocular carcinogenesis. These mislocalizations were correlated to the early dysplastic stages of ocular tumorigenesis. Additionally, the mislocalization of each protein was associated with its downregulation. Decreased levels of these proteins may be considered as late-stage markers of the disease but also as markers of the invasive stage of this cancerous process. This downregulation may be involved in epithelial-mesenchymal transition in this mouse ocular tumoral model. This would be consistent with the downregulation of E-cadherin and upregulation of N-cadherin expression observed in this model.
This is the first study to demonstrate the involvement of Dlg1, Scrib, and Lgl1 in a mouse with ocular adenocarcinoma and the simultaneous involvement of these proteins in the same cancer. Our results indicate that both the mislocalization and downregulation of these proteins may be involved together in ocular carcinogenesis.
PMCID: PMC2605424  PMID: 19098995
5.  Analysis of partner of inscuteable (mPins) expression in the developing mouse eye 
Molecular Vision  2008;14:2575-2596.
Asymmetric cell division (ACD) is the fundamental mechanism underlying the generation of cellular diversity in invertebrates and vertebrates. During Drosophila neuroblast division, this process involves stabilization of the apical complex and interaction between the Inscuteable (Insc) and Partner of inscuteable (Pins) proteins. Both cell-intrinsic factors and cell–cell interactions seem to contribute to cell fate decisions in the retina. The Pins protein is known to play a major role in the asymmetric segregation of cell fate determinants during development of the central nervous system in general, but its role in asymmetric cell divisions and retinoblast cell fate has never been explored. The primary aim of this study was to determine the spatial distribution and time course of mouse homolog of Drosophila Partner of Inscuteable (mPins) expression in the developing and adult mouse eye.
The expression pattern of mPins was studied in the mouse eye from embryonic (E) stage E11.5 until adulthood, by semiquantitative RT–PCR, in situ hybridization, and immunohistochemistry. In addition, variations in mRNA and protein levels for mPins were analyzed in the developing postnatal and adult lens, by semiquantitative RT–PCR, western blot analysis, in situ hybridization, and immunohistochemistry.
We detected mPins mRNA at early stages of mouse embryonic eye development, particularly in the neuroblastic layer. In early postnatal development, mPins mRNA was still detected in the neuroblastic layer, but also began to be detectable in the ganglion cell layer. Thereafter, mPins mRNA was found throughout the retina. This pattern was maintained in differentiated adult retina. Immunohistochemical studies showed that mPins protein was present in the neuroblastic layer and the ganglion cell layer during the early stages of postnatal retinal development. At these stages, mPins protein was colocalized with Numb protein, a marker of the ACD. At later postnatal stages, mPins protein was present in all retinal nuclear layers and in the inner plexiform layer. It continued to be detected in these layers in the differentiated retina; the outer plexiform layer and the photoreceptor inner segments also began to display positive immunostaining for mPins. In the adult retina, mPins was also detected in the retinal pigment epithelium and choroidal melanocytes. Throughout development, mPins protein was detected in nonretinal tissues, including the cornea, ciliary body, and lens. We focused our attention on lens development and showed that mPins protein was first detected at E14.5. The most striking results obtained concerned the lens, in which mPins protein distribution switched from the anterior to the posterior region of the lens during embryonic development. Interestingly, in the postnatal and adult lens, mPins protein was detected in all lens cells and fibers.
We provide the first demonstration that mPins protein is expressed from embryonic stages until adulthood in the mouse eye. These results suggest that mPins plays important roles in eye development. This work provides preliminary evidence strongly supporting a role for mPins in the asymmetric division of retinoblasts, and in the structure and functions of adult mouse retina. However, the link between the presence of mPins in different ocular compartments and the possible occurrence of asymmetric cell divisions in these compartments remains to be clarified. Further studies are required to elucidate the in vitro and in vivo functions of mPins in the developing and adult human eye.
PMCID: PMC2613078  PMID: 19122831
6.  Familial pseudotumoral sclerochoroidal calcification associated with chondrocalcinosis 
The British Journal of Ophthalmology  2004;88(8):1094-1095.
PMCID: PMC1772273  PMID: 15258034
familial pseudotumoral sclerochoroidal calcification; chondrocalcinosis
7.  Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts 
Journal of Medical Genetics  2003;40(4):262-267.
Congenital cataracts are a major cause of bilateral visual impairment in childhood. We mapped the gene responsible for autosomal congenital cerulean cataracts to chromosome 2q33–35 in a four generation family of Moroccan descent. The maximum lod score (7.19 at recombination fraction θ=0) was obtained for marker D2S2208 near the γ-crystallin gene (CRYG) cluster. Sequencing of the coding regions of the CRYGA, B, C, and D genes showed the presence of a heterozygous C>A transversion in exon 2 of CRYGD that is associated with cataracts in this family. This mutation resulted in a proline to threonine substitution at amino acid 23 of the protein in the first of the four Greek key motifs that characterise this protein. We show that although the x ray crystallography modelling does not indicate any change of the backbone conformation, the mutation affects a region of the Greek key motif that is important for determining the topology of this protein fold. Our data suggest strongly that the proline to threonine substitution may alter the protein folding or decrease the thermodynamic stability or solubility of the protein. Furthermore, this is the first report of a mutation in this gene resulting in autosomal dominant congenital cerulean cataracts.
PMCID: PMC1735438  PMID: 12676897

Results 1-7 (7)