PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Abe, erαko")
1.  Novel Lysophospholipid Acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b Responsible for Generation of Palmitate-Docosahexaenoate-Phosphatidylcholine and Phosphatidylethanolamine 
PLoS ONE  2014;9(8):e102377.
N-3 polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, 22:6n-3), have been reported to play roles in preventing cardiovascular diseases. The major source of DHA is fish oils but a recent increase in the global demand of DHA and decrease in fish stocks require a substitute. Thraustochytrids, unicellular marine protists belonging to the Chromista kingdom, can synthesize large amounts of DHA, and, thus, are expected to be an alternative to fish oils. DHA is found in the acyl chain(s) of phospholipids as well as triacylglycerols in thraustochytrids; however, how thraustochytrids incorporate DHA into phospholipids remains unknown. We report here a novel lysophospholipid acyltransferase (PLAT1), which is responsible for the generation of DHA-containing phosphatidylcholine and phosphatidylethanolamine in thraustochytrids. The PLAT1 gene, which was isolated from the genomic DNA of Aurantiochytrium limacinum F26-b, was expressed in Saccharomyces cerevisiae, and the FLAG-tagged recombinant enzyme was characterized after purification with anti-FLAG affinity gel. PLAT1 shows wide specificity for donor substrates as well as acceptor substrates in vitro, i.e, the enzyme can adopt lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine and lysophosphatidylinositol as acceptor substrates, and 15:0/16:0-CoA and DHA-CoA as donor substrates. In contrast to the in vitro experiment, only lysophosphatidylcholine acyltransferase and lysophosphatidylethanolamine acyltransferase activities were decreased in plat1-knockout mutants, resulting in a decrease of 16:0-DHA-phosphatidylcholine (PC) [PC(38∶6)] and 16:0-DHA-phosphatidylethanolamine (PE) [PE(38∶6)], which are two major DHA-containing phospholipids in A. limacinum F26-b. However, the amounts of other phospholipid species including DHA-DHA-PC [PC(44∶12)] and DHA-DHA-PE [PE(44∶12)] were almost the same in plat-knockout mutants and the wild-type. These results indicate that PLAT1 is the enzyme responsible for the generation of 16:0-DHA-PC and 16:0-DHA-PE in the thraustochytrid.
doi:10.1371/journal.pone.0102377
PMCID: PMC4121067  PMID: 25090090
2.  Versatile Transformation System That Is Applicable to both Multiple Transgene Expression and Gene Targeting for Thraustochytrids 
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neor), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neor marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neor mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C20:3n-6) and eicosatetraenoic acid (C20:4n-3), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.
doi:10.1128/AEM.07129-11
PMCID: PMC3346472  PMID: 22344656
3.  An induction of microRNA, miR-7 through estrogen treatment in breast carcinoma 
Journal of Translational Medicine  2012;10(Suppl 1):S2.
Background
Estrogen plays an important role in the development of estrogen-dependent breast carcinoma. Recently, several studies demonstrated a possible involvement of several micro RNAs (miRNAs) in the development of resistance to endocrine therapy in breast cancer patients, but the correlation between estrogen actions and miRNA expression in breast carcinoma still remains largely unknown. Therefore, in this study, we examined the in vitro effects of estrogen upon miRNA expression profiles in breast carcinoma.
Methods
We first screened the miRNA expression profiles induced by 17β-Estradiol (E2) using RT2 miRNA PCR Array in the ER-positive breast carcinoma cell line MCF-7. We identified miR-7 as the important miRNA associated with estrogen actions in these cells and further examined the changes of estrogen-dependent EGFR expression by miR-7 in ER-positive or -negative breast carcinoma cell lines including MCF-7. We also evaluated the correlation between miR-7 and EGFR expression in breast carcinoma cells derived from 21 patients using laser capture microdissection combined with quantitative reverse transcriptase-PCR.
Results
Seventeen miRNAs were significantly induced by E2 treatment in the MCF-7 cell line. Among 17 miRNAs induced by estradiol treatment, only miR-7 expression was significantly decreased by subsequent ICI treatment. The expression of miR-7 was up-regulated 2.94-fold by E2 treatment. miR-7 was reported to suppress epidermal growth factor receptor (EGFR) expression in several human malignancies. Transfection of miR-7 significantly suppressed EGFR mRNA levels in MCF-7 cells. Depletion of E2 from cell culture media also increased the expression level of EGFR mRNA in MCF-7 and T-47D cells but not in ER-negative, MDA-MB-231 and SK-BR-3 cells. We also evaluated the status of miR-7 in breast carcinoma tissues, but the correlation between the status of miR-7 and EGFR in carcinoma cells isolated by laser capture microscopy was not detected.
Conclusions
These results suggest that miR-7 may play a role in the development of resistance to endocrine therapy in breast cancer patients through regulating EGFR expression of carcinoma cells.
doi:10.1186/1479-5876-10-S1-S2
PMCID: PMC3445861  PMID: 23227519
4.  Increase of Eicosapentaenoic Acid in Thraustochytrids through Thraustochytrid Ubiquitin Promoter-Driven Expression of a Fatty Acid Δ5 Desaturase Gene▿† 
Applied and Environmental Microbiology  2011;77(11):3870-3876.
Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C16:0), n − 6 docosapentaenoic acid (DPA) (C22:5n − 6), and docosahexaenoic acid (DHA) (C22:6n − 3), with eicosapentaenoic acid (EPA) (C20:5n − 3) and arachidonic acid (AA) (C20:4n − 6) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C20:4n − 3) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C20:3n − 6) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.
doi:10.1128/AEM.02664-10
PMCID: PMC3127612  PMID: 21478316

Results 1-4 (4)