PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Expression of Matrix Metalloproteinase-1 in Alveolar Macrophages, Type II Pneumocytes, and Airways in Smokers: Relationship to Lung Function and Emphysema 
Lung  2014;192(4):467-472.
Background
An imbalance between proteolytic enzymes and their inhibitors is thought to be involved in the pathogenesis of chronic obstructive pulmonary disease. Matrix metalloproteinase-1, also known as interstitial collagenase, has been implicated as a potentially important proteinase in the genesis of chronic obstructive pulmonary disease and, more specifically, emphysema.
Methods
We performed quantitative immunohistochemical assessment of matrix metalloproteinase-1 expression in the resected lung of 20 smokers/ex-smokers who had varying severity of airflow obstruction and emphysema and compared this with the lungs of 5 nonsmokers. Emphysema was measured using a morphometric measure of the lungs’ surface area/volume ratio and with qualitative and quantitative computed tomography (CT) measures of emphysema.
Results
There were significantly more matrix metalloproteinase-1-expressing alveolar macrophages and type II pneumocytes as well as a greater percentage of small airways that stained positively for matrix metalloproteinase-1 in the lungs of smokers than in those of nonsmokers (p < 0.0001, p < 0.0001, and p = 0.0003, respectively). The extent of staining of type II pneumocytes and airways for matrix metalloproteinase-1 was significantly related to the extent of smoking (p = 0.012 and p = 0.013, respectively). In addition, the extent of matrix metalloproteinase-1 staining of alveolar macrophages was related to the lung surface area/volume ratio and to qualitative estimates of emphysema on CT.
Conclusion
These findings suggest that cigarette smoking increases expression of matrix metalloproteinase-1 in alveolar macrophages as well as in alveolar and small airway epithelial cells. Smokers who develop emphysema have increased alveolar macrophage expression of matrix metalloproteinase-1.
Electronic supplementary material
The online version of this article (doi:10.1007/s00408-014-9585-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s00408-014-9585-6
PMCID: PMC4104162  PMID: 24792232
Computed tomography; Emphysema; Expression; Immunohistochemistry; Metalloproteinase; Lung
2.  Effect of heme oxygenase-1 polymorphisms on lung function and gene expression 
BMC Medical Genetics  2011;12:117.
Background
Oxidative stress induced by smoking is considered to be important in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD). Heme oxygenase-1 (HMOX1) is an essential enzyme in heme catabolism that is induced by oxidative stress and may play a protective role as an antioxidant in the lung. We determined whether HMOX1 polymorphisms were associated with lung function in COPD patients and whether the variants had functional effects.
Methods
We genotyped five single nucleotide polymorphisms (SNPs) in the HMOX1 gene in Caucasians who had the fastest (n = 278) and the slowest (n = 304) decline of FEV1 % predicted, selected from smokers in the NHLBI Lung Health Study. These SNPs were also studied in Caucasians with the lowest (n = 535) or the highest (n = 533) baseline lung function. Reporter genes were constructed containing three HMOX1 promoter polymorphisms and the effect of these polymorphisms on H2O2 and hemin-stimulated gene expression was determined. The effect of the HMOX1 rs2071749 SNP on gene expression in alveolar macrophages was investigated.
Results
We found a nominal association (p = 0.015) between one intronic HMOX1 SNP (rs2071749) and lung function decline but this did not survive correction for multiple comparisons. This SNP was in perfect linkage disequilibrium with rs3761439, located in the promoter of HMOX1. We tested rs3761439 and two other putatively functional polymorphisms (rs2071746 and the (GT)n polymorphism) in reporter gene assays but no significant effects on gene expression were found. There was also no effect of rs2071749 on HMOX1 gene expression in alveolar macrophages.
Conclusions
We found no association of the five HMOX1 tag SNPs with lung function decline and no evidence that the three promoter polymorphisms affected the regulation of the HMOX1 gene.
doi:10.1186/1471-2350-12-117
PMCID: PMC3180266  PMID: 21902835
Heme oxygenase; polymorphism; chronic obstructive pulmonary disease
3.  Alpha1-antitrypsin deficiency: a clinical-genetic overview 
Severe α1-antitrypsin deficiency (AATD) is an inherited disorder, leading to development of emphysema in smokers at a relatively young age with disability in their forties or fifties. The emphysema results from excessive elastin degradation by neutrophil elastase as a result of the severe deficiency of its major inhibitor α1-antitrypsin (AAT). The AAT expression is determined by the SERPINA1 gene which expresses codominant alleles. The three most common alleles are the normal M, the S with plasma levels of 60% of normal, and the severely deficient Z with levels of about 15% of normal. Homozygosity for the Z mutant allele is associated with retention of abnormal AAT in the liver, which may lead to neonatal hepatitis, liver disease in children, and liver disease in adults. Regular intravenous infusions of purified human AAT (AAT augmentation therapy) have been used to partially correct the biochemical defect and protect the lung against further injury. Two randomized controlled trials showed a trend of slower progression of emphysema by chest computerized tomography. Integrated analysis of these two studies indicated significantly slower progression of emphysema. AAT is quantified by immunologic measurement of AAT in serum, the phenotype characterized by isoelectric focusing, the common genotypes by targeted DNA analysis, and by sequencing the coding region of the gene when the AAT abnormality remains undefined. AATD is often unrecognized, and diagnosis delayed. Testing for AATD is recommended in patients with chronic irreversible airflow obstruction, especially in those with early onset of disease or positive family history. Testing is also recommended for immediate family members of those with AATD, asthmatics with persistent airflow obstruction, and infants and older subjects with unexplained liver disease. There are over 100 different AAT gene variants; most are rare and only some are associated with clinical disease.
doi:10.2147/TACG.S10604
PMCID: PMC3681178  PMID: 23776367
AAT; AATD; ZZ; early onset emphysema; panacinar emphysema; neonatal jaundice and hepatitis; childhood liver disease; genetics of alpha1-antitrypsin; alpha1-antitrypsin laboratory testing and phenotyping

Results 1-3 (3)