PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-50 (611)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
26.  Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells 
Summary
The performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) is critically dependent on the selection of materials and optimization of individual components. A conventional high-temperature membrane electrode assembly (HT-MEA) primarily consists of a polybenzimidazole (PBI)-type membrane containing phosphoric acid and two gas diffusion electrodes (GDE), the anode and the cathode, attached to the two surfaces of the membrane. This review article provides a survey on the materials implemented in state-of-the-art HT-MEAs. These materials must meet extremely demanding requirements because of the severe operating conditions of HT-PEMFCs. They need to be electrochemically and thermally stable in highly acidic environment. The polymer membranes should exhibit high proton conductivity in low-hydration and even anhydrous states. Of special concern for phosphoric-acid-doped PBI-type membranes is the acid loss and management during operation. The slow oxygen reduction reaction in HT-PEMFCs remains a challenge. Phosphoric acid tends to adsorb onto the surface of the platinum catalyst and therefore hampers the reaction kinetics. Additionally, the binder material plays a key role in regulating the hydrophobicity and hydrophilicity of the catalyst layer. Subsequently, the binder controls the electrode–membrane interface that establishes the triple phase boundary between proton conductive electrolyte, electron conductive catalyst, and reactant gases. Moreover, the elevated operating temperatures promote carbon corrosion and therefore degrade the integrity of the catalyst support. These are only some examples how materials properties affect the stability and performance of HT-PEMFCs. For this reason, materials characterization techniques for HT-PEMFCs, either in situ or ex situ, are highly beneficial. Significant progress has recently been made in this field, which enables us to gain a better understanding of underlying processes occurring during fuel cell operation. Various novel tools for characterizing and diagnosing HT-PEMFCs and key components are presented in this review, including FTIR and Raman spectroscopy, confocal Raman microscopy, synchrotron X-ray imaging, X-ray microtomography, and atomic force microscopy.
doi:10.3762/bjnano.6.8
PMCID: PMC4311728
binder; catalysts; characterization techniques; high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC); membrane electrode assembly (MEA); phosphoric acid-doped polybenzimidazole (PBI)
27.  Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence 
Summary
Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx + oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.
doi:10.3762/bjnano.6.6
PMCID: PMC4311619
electrocatalytic activity; in situ X-ray diffraction; manganese glycolate; manganese oxide nanoparticles; mesoporous α-Mn2O3
28.  The fate of a designed protein corona on nanoparticles in vitro and in vivo 
Summary
A variety of monodisperse superparamagnetic iron oxide particles (SPIOs) was designed in which the surface was modified by PEGylation with mono- or bifunctional poly(ethylene oxide)amines (PEG). Using 125I-labeled test proteins (transferrin, albumin), the binding and exchange of corona proteins was studied first in vitro. Incubation with 125I-transferrin showed that with increasing grade of PEGylation the binding was substantially diminished without a difference between simply adsorbed and covalently bound protein. However, after incubation with excess albumin and subsequently whole plasma, transferrin from the preformed transferrin corona was more and more lost from SPIOs in the case of adsorbed proteins. If non-labeled transferrin was used as preformed corona and excess 125I-labeled albumin was added to the reaction mixtures with different SPIOs, a substantial amount of label was bound to the particles with initially adsorbed transferrin but little or even zero with covalently bound transferrin. These in vitro experiments show a clear difference in the stability of a preformed hard corona with adsorbed or covalently bound protein. This difference seems, however, to be of minor importance in vivo when polymer-coated 59Fe-SPIOs with adsorbed or covalently bound 125I-labeled mouse transferrin were injected intravenously in mice. With both protein coronae the 59Fe/125I-labelled particles were cleared from the blood stream within 30 min and appeared in the liver and spleen to a large extent (>90%). In addition, after 2 h already half of the 125I-labeled transferrin from both nanodevices was recycled back into the plasma and into tissue. This study confirms that adsorbed transferrin from a preformed protein corona is efficiently taken up by cells. It is also highlighted that a radiolabelling technique described in this study may be of value to investigate the role of protein corona formation in vivo for the respective nanoparticle uptake.
doi:10.3762/bjnano.6.5
PMCID: PMC4311732
albumin; 59Fe; 125I; organ uptake; protein corona; SPIOs; transferrin
29.  Formation of stable Si–O–C submonolayers on hydrogen-terminated silicon(111) under low-temperature conditions 
Summary
In this letter, we report results of a hydrosilylation carried out on bifunctional molecules by using two different approaches, namely through thermal treatment and photochemical treatment through UV irradiation. Previously, our group also demonstrated that in a mixed alkyne/alcohol solution, surface coupling is biased towards the formation of Si–O–C linkages instead of Si–C linkages, thus indirectly supporting the kinetic model of hydrogen abstraction from the Si–H surface (Khung, Y. L. et al. Chem. – Eur. J. 2014, 20, 15151–15158). To further examine the probability of this kinetic model we compare the results from reactions with bifunctional alkynes carried out under thermal treatment (<130 °C) and under UV irradiation, respectively. X-ray photoelectron spectroscopy and contact angle measurements showed that under thermal conditions, the Si–H surface predominately reacts to form Si–O–C bonds from ethynylbenzyl alcohol solution while the UV photochemical route ensures that the alcohol-based alkyne may also form Si–C bonds, thus producing a monolayer of mixed linkages. The results suggested the importance of surface radicals as well as the type of terminal group as being essential towards directing the nature of surface linkage.
doi:10.3762/bjnano.6.3
PMCID: PMC4311582
hydrogen abstraction; thermal hydrosilylation; UV-initated hydrosilylation; X-ray photoelectron spectroscopy
30.  Size-dependent density of zirconia nanoparticles 
Summary
The correlation between density and specific surface area of ZrO2 nanoparticles (NPs) was studied. The NPs were produced using a hydrothermal process involving microwave heating. The material was annealed at 1100 °C which resulted in an increase in the average grain size of the ZrO2 NPs from 11 to 78 nm and a decrease in the specific surface area from 97 to 15 m2/g. At the same time, the density increased from 5.22 g/m3 to 5.87 g/m3. This effect was interpreted to be the result of the presence of a hydroxide monolayer on the NP surface. A smaller ZrO2 grain size was correlated with a larger contribution of the low density surface layer to the average density. To prove the existence of such a layer, the material was synthesized using 50% heavy water. Fourier transform infrared spectroscopy (FTIR) permitted the identification of the –OD groups created during synthesis. It was found that the –OD groups persisted on the ZrO2 surface even after annealing at 1100 °C. This hydroxide layer is responsible for the decrease in the average density of the NPs as their size decreases. This study of the correlation between particle size and density may be used to assess the quality of the NPs. In most cases, the technological aim is to avoid an amorphous layer and to obtain fully crystalline nanoparticles with the highest density possible. However, due to the effect of the surface layers, there is a maximum density which can be achieved for a given average NP diameter. The effect of the surface layer on the NP density becomes particularly evident for NPs smaller than 50 nm, and thus, the density of nanoparticles is size dependent.
doi:10.3762/bjnano.6.4
PMCID: PMC4311614
density; hydrothermal synthesis; hydroxy groups; nanometrology; nanopowders; zirconia
31.  The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness 
Summary
We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.
doi:10.3762/bjnano.6.2
PMCID: PMC4311649
adhesion; AFM cantilever; air layer; capillary forces; hairs; measurement; micromechanical systems; microstructures; Salvinia effect; Salvinia molesta; sensors; stiffness; superhydrophobic surfaces
32.  Exploring plasmonic coupling in hole-cap arrays 
Summary
The plasmonic coupling between gold caps and holes in thin films was investigated experimentally and through finite-difference time-domain (FDTD) calculations. Sparse colloidal lithography combined with a novel thermal treatment was used to control the vertical spacing between caps and hole arrays and compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP) modes and localized surface plasmon resonance (LSPR)-type resonances in hole arrays when they are in close proximity. The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures.
doi:10.3762/bjnano.6.1
PMCID: PMC4311723
caps; colloidal lithography; hybridization; localized surface plasmon resonance; near field; SRO hole arrays
33.  Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111) 
Summary
We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.15. Their photoluminescence (PL) spectra were measured at low temperatures (from 6 to 25 K) with excitation at 405 and 458 nm. There are four major features in the energy range of interest (980–1120 meV) at energies of 1040.7, 1082.8, 1092.5, and 1098.5 meV, which are assigned to the NW-transverse optic (TO) Si–Si mode, NW-transverse acoustic (TA), Si–substrate–TO and NW-no-phonon (NP) lines, respectively. From these results the NW TA and TO phonon energies are found to be 15.7 and 57.8 meV, respectively, which agree very well with the values expected for bulk Si1− xGex with x = 0.15, while the measured NW NP energy of 1099 meV would indicate a bulk-like Ge concentration of x = 0.14. Both of these concentrations values, as determined from PL, are in agreement with the target value. The NWs are too large in diameter for a quantum confinement induced energy shift in the band gap. Nevertheless, NW PL is readily observed, indicating that efficient carrier recombination is occurring within the NWs.
doi:10.3762/bjnano.5.259
PMCID: PMC4311733
bandgap; germanium; nanowires; near field; silicon; photoluminescence
34.  SERS and DFT study of copper surfaces coated with corrosion inhibitor 
Summary
Azole derivatives are common inhibitors of copper corrosion due to the chemical adsorption occurring on the metal surface that gives rise to a protective film. In particular, 1,2,4-triazole performs comparable to benzotriazole, which is much more widely used, but is by no means an environmentally friendly agent. In this study, we have analyzed the adsorption of 1,2,4-triazole on copper by taking advantage of the surface-enhanced Raman scattering (SERS) effect, which highlights the vibrational features of organic ligand monolayers adhering to rough surfaces of some metals such as gold, silver and copper. To ensure the necessary SERS activation, a roughening procedure was implemented on the copper substrates, resulting in nanoscale surface structures, as evidenced by microscopic investigation. To obtain sufficient information on the molecule–metal interaction and the formation of an anticorrosive thin film, the SERS spectra were interpreted with the aid of theoretical calculations based on the density functional theory (DFT) approach.
doi:10.3762/bjnano.5.258
PMCID: PMC4311660
copper corrosion; DFT; inhibitor film; 1,2,4-triazole; SERS
35.  Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating 
Summary
In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles) diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.
doi:10.3762/bjnano.5.257
PMCID: PMC4311695
basolateral application; cytotoxicity; electric cell–substrate impedance sensing; gold; nanoparticles
36.  Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state 
Summary
The uptake of nanoparticles into cells often involves their engulfment by the plasma membrane and a fission of the latter. Understanding the physical mechanisms underlying these uptake processes may be achieved by the investigation of simple model systems that can be compared to theoretical models. Here, we present experiments on a massive uptake of silica nanoparticles by giant unilamellar lipid vesicles (GUVs). We find that this uptake process depends on the size of the particles as well as on the thermodynamic state of the lipid membrane. Our findings are discussed in the light of several theoretical models and indicate that these models have to be extended in order to capture the interaction between nanomaterials and biological membranes correctly.
doi:10.3762/bjnano.5.256
PMCID: PMC4311713
cells; endocytosis; engulfment; fission; gel phase; giant unilamellar lipid vesicles (GUV); lipid membranes; liquid phase; nanoparticle; phosphocholines; uptake; vesicles; wrapping
37.  High-frequency multimodal atomic force microscopy 
Summary
Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.
doi:10.3762/bjnano.5.255
PMCID: PMC4311654
atomic force microscopy; multifrequency imaging; nanomechanical characterization; photothermal excitation; small cantilevers
38.  Poly(styrene)/oligo(fluorene)-intercalated fluoromica hybrids: synthesis, characterization and self-assembly 
Summary
We report on the intercalation of a cationic fluorescent oligo(fluorene) in between the 2D interlayer region of a fluoromica type silicate. The formation of intercalated structures with different fluorophore contents is observed in powders by synchrotron radiation XRD. Successively, the hybrids are dispersed in poly(styrene) through in situ polymerization. Such a procedure allows us to synthesize the materials from solution, to achieve solid films, and to characterize them by optical and morphologic techniques. The polymeric films with homogeneous distribution of the hybrids exhibit ultraviolet–blue photoluminescence with a significantly enhanced photostability compared to the bare oligo(fluorene)s. Finally, under specific conditions, the polymer hybrid with higher oligo(fluorene) content spontaneously assembles into highly ordered microporous films.
doi:10.3762/bjnano.5.254
PMCID: PMC4311581
breath figures; fluoromica; layered silicates; oligo(fluorene); photostability; self-assembly
39.  Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices 
Summary
Precision-cut lung slices (PCLS) are an established ex vivo alternative to in vivo experiments in pharmacotoxicology. The aim of this study was to evaluate the potential of PCLS as a tool in nanotoxicology studies. Silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles as well as quartz particles were used because these materials have been previously shown in several in vitro and in vivo studies to induce a dose-dependent cytotoxic and inflammatory response. PCLS were exposed to three concentrations of 70 nm monodisperse polyvinylpyrrolidone (PVP)-coated Ag-NPs under submerged culture conditions in vitro. ZnO-NPs (NM110) served as ‘soluble’ and quartz particles (Min-U-Sil) as ‘non-soluble’ control particles. After 4 and 24 h, the cell viability and the release of proinflammatory cytokines was measured. In addition, multiphoton microscopy was employed to assess the localization of Ag-NPs in PCLS after 24 h of incubation. Exposure of PCLS to ZnO-NPs for 4 and 24 h resulted in a strong decrease in cell viability, while quartz particles had no cytotoxic effect. Moreover, only a slight cytotoxic response was detected by LDH release after incubation of PCLS with 20 or 30 µg/mL of Ag-NPs. Interestingly, none of the particles tested induced a proinflammatory response in PCLS. Finally, multiphoton microscopy revealed that the Ag-NP were predominantly localized at the cut surface and only to a much lower extent in the deeper layers of the PCLS. In summary, only ‘soluble’ ZnO-NPs elicited a strong cytotoxic response. Therefore, we suggest that the cytotoxic response in PCLS was caused by released Zn2+ ions rather than by the ZnO-NPs themselves. Moreover, Ag-NPs were predominantly localized at the cut surface of PCLS but not in deeper regions, indicating that the majority of the particles did not have the chance to interact with all cells present in the tissue slice. In conclusion, our findings suggest that PCLS may have some limitations when used for nanotoxicology studies. To strengthen this conclusion, however, other NP types and concentrations need to be tested in further studies.
doi:10.3762/bjnano.5.253
PMCID: PMC4311658
cytokines; cytotoxicity; ex vivo; lung slices; nanoparticles
40.  Aquatic versus terrestrial attachment: Water makes a difference 
Summary
Animal attachment to a substrate is very different in terrestrial and aquatic environments. We discuss variations in both the forces acting to detach animals and forces of attachment. While in a terrestrial environment gravity is commonly understood as the most important detachment force, under submerged conditions gravity is nearly balanced out by buoyancy and therefore matters little. In contrast, flow forces such as drag and lift are of higher importance in an aquatic environment. Depending on the flow conditions, flow forces can reach much higher values than gravity and vary in magnitude and direction. For many of the attachment mechanisms (adhesion including glue, friction, suction and mechanical principles such as hook, lock, clamp and spacer) significant differences have to be considered under water. For example, the main principles of dry adhesion, van der Waals forces and chemical bonding, which make a gecko stick to the ceiling, are weak under submerged conditions. Capillary forces are very important for wet adhesion, e.g., in terrestrial beetles or flies, but usually do not occur under water. Viscous forces are likely an important contributor to adhesion under water in some mobile animals such as torrent frogs and mayflies, but there are still many open questions to be answered. Glue is the dominant attachment mechanism of sessile aquatic animals and the aquatic realm presents many challenges to this mode of attachment. Viscous forces and the lack of surface tension under submerged conditions also affect frictional interactions in the aquatic environment. Moreover, the limitation of suction to the pressure difference at vacuum conditions can be ameliorated under water, due to the increasing pressure with water depth.
doi:10.3762/bjnano.5.252
PMCID: PMC4311720
adhesion; biofilm; friction; hooks; suction
41.  Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles 
Summary
The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.
doi:10.3762/bjnano.5.251
PMCID: PMC4311666
fluorescence labelling; noble metal nanoparticles; platinum-decorated ceria nanoparticles; perylene diimide; polyorganosiloxane core; silica core-shell nanoparticles
42.  Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions 
Summary
Nanoparticles of various shapes, sizes, and materials carrying different surface modifications have numerous technological and biomedical applications. Yet, the mechanisms by which nanoparticles interact with biological structures as well as their biological impact and hazards remain poorly investigated. Due to their large surface to volume ratio, nanoparticles usually exhibit properties that differ from those of bulk materials. Particularly, the surface chemistry of the nanoparticles is crucial for their durability and solubility in biological media as well as for their biocompatibility and biodistribution. Polystyrene does not degrade in the cellular environment and exhibits no short-term cytotoxicity. Because polystyrene nanoparticles can be easily synthesized in a wide range of sizes with distinct surface functionalizations, they are perfectly suited as model particles to study the effects of the particle surface characteristics on various biological parameters. Therefore, we have exploited polystyrene nanoparticles as a convenient platform to study bio–nano interactions. This review summarizes studies on positively and negatively charged polystyrene nanoparticles and compares them with clinically used superparamagnetic iron oxide nanoparticles.
doi:10.3762/bjnano.5.250
PMCID: PMC4311717
amino groups; apoptosis; carboxyl groups; cell proliferation; leukemia cell lines; macrophages; mTOR; polystyrene nanoparticles
43.  Low-cost plasmonic solar cells prepared by chemical spray pyrolysis 
Summary
Solar cells consisting of an extremely thin In2S3/CuInS2 buffer/absorber layer uniformly covering planar ZnO were prepared entirely by chemical spray pyrolysis. Au nanoparticles (Au-NPs) were formed via thermal decomposition of a gold(III) chloride trihydrate (HAuCl4·3H2O) precursor by spraying 2 mmol/L of the aqueous precursor solution onto a substrate held at 260 °C. Current–voltage scans and external quantum efficiency spectra were used to evaluate the solar cell performance. This work investigates the effect of the location of the Au-NP layer deposition (front side vs rear side) in the solar cell and the effect of varying the volume (2.5–10 mL) of the sprayed Au precursor solution. A 63% increase (from 4.6 to 7.5 mA/cm2) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell.
doi:10.3762/bjnano.5.249
PMCID: PMC4273276  PMID: 25551068
Au nanoparticles; chemical spray pyrolysis; extremely thin absorber; plasmon resonance; solar cell
44.  Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects 
Summary
Engineered nanomaterials are known to enter human cells, often via active endocytosis. Mechanistic details of the interactions between nanoparticles (NPs) with cells are still not well enough understood. NP size is a key parameter that controls the endocytic mechanism and affects the cellular uptake yield. Therefore, we have systematically analyzed the cellular uptake of fluorescent NPs in the size range of 3.3–100 nm (diameter) by live cells. By using spinning disk confocal microscopy in combination with quantitative image analysis, we studied the time courses of NP association with the cell membrane and subsequent internalization. NPs with diameters of less than 10 nm were observed to accumulate at the plasma membrane before being internalized by the cells. In contrast, larger NPs (100 nm) were directly internalized without prior accumulation at the plasma membrane, regardless of their surface charges. We attribute this distinct size dependence to the requirement of a sufficiently strong local interaction of the NPs with the endocytic machinery in order to trigger the subsequent internalization.
doi:10.3762/bjnano.5.248
PMCID: PMC4273230  PMID: 25551067
cell membrane; endocytosis; fluorescence microscopy; nanoparticle; size effect
45.  Synthesis of radioactively labelled CdSe/CdS/ZnS quantum dots for in vivo experiments 
Summary
During the last decades of nanoparticles research, many nanomaterials have been developed for applications in the field of bio-labelling. For the visualization of transport processes in the body, organs and cells, luminescent quantum dots (QDs) make for highly useful diagnostic tools. However, intercellular routes, bio-distribution, metabolism during degradation or quantification of the excretion of nanoparticles, and the study of the biological response to the QDs themselves are areas which to date have not been fully investigated. In order to aid in addressing those issues, CdSe/CdS/ZnS QDs were radioactively labelled, which allows quantification of the QD concentration in the whole body or in ex vivo samples by γ-counting. However, the synthesis of radioactively labelled QDs is not trivial since the coating process must be completely adapted, and material availability, security and avoidance of radioactive waste must be considered. In this contribution, the coating of CdSe/CdS QDs with a radioactive 65ZnS shell using a modified, operator-safe, SILAR procedure is presented. Under UV illumination, no difference in the photoluminescence of the radioactive and non-radioactive CdSe/CdS/ZnS colloidal solutions was observed. Furthermore, a down-scaled synthesis for the production of very small batches of 5 nmol QDs without loss in the fluorescence quality was developed. Subsequently, the radio-labelled QDs were phase transferred by encapsulation into an amphiphilic polymer. γ-counting of the radioactivity provided confirmation of the successful labelling and phase transfer of the QDs.
doi:10.3762/bjnano.5.247
PMCID: PMC4273238  PMID: 25551066
biomarker; CdSe/CdS/ZnS; quantum dots; radioactive labelling; 65Zn
46.  Si/Ge intermixing during Ge Stranski–Krastanov growth 
Summary
The Stranski–Krastanov growth of Ge islands on Si(001) has been widely studied. The morphology changes of Ge islands during growth, from nucleation to hut/island formation and growth, followed by hut-to-dome island transformation and dislocation nucleation of domes, have been well described, even at the atomic scale, using techniques such as scanning tunneling microscopy and transmission electron microscopy. Although it is known that these islands do not consist of pure Ge (due to Si/Ge intermixing), the composition of the Ge islands is not precisely known. In the present work, atom probe tomography was used to study the composition of buried dome islands at the atomic scale, in the three-dimensional space. The core of the island was shown to contain about 55 atom % Ge, while the Ge composition surrounding this core decreases rapidly in all directions in the islands to reach a Ge concentration of about 15 atom %. The Ge distribution in the islands follows a cylindrical symmetry and Ge segregation is observed only in the {113} facets of the islands. The Ge composition of the wetting layer is not homogeneous, varying from 5 to 30 atom %.
doi:10.3762/bjnano.5.246
PMCID: PMC4273217  PMID: 25551065
atom probe tomography; germanium islands; Stranski–Krastanov growth
47.  Interaction of dermatologically relevant nanoparticles with skin cells and skin 
Summary
The investigation of nanoparticle interactions with tissues is complex. High levels of standardization, ideally testing of different material types in the same biological model, and combinations of sensitive imaging and detection methods are required. Here, we present our studies on nanoparticle interactions with skin, skin cells, and biological media. Silica, titanium dioxide and silver particles were chosen as representative examples for different types of skin exposure to nanomaterials, e.g., unintended environmental exposure (silica) versus intended exposure through application of sunscreen (titanium dioxide) or antiseptics (silver). Because each particle type exhibits specific physicochemical properties, we were able to apply different combinations of methods to examine skin penetration and cellular uptake, including optical microscopy, electron microscopy, X-ray microscopy on cells and tissue sections, flow cytometry of isolated skin cells as well as Raman microscopy on whole tissue blocks. In order to assess the biological relevance of such findings, cell viability and free radical production were monitored on cells and in whole tissue samples. The combination of technologies and the joint discussion of results enabled us to look at nanoparticle–skin interactions and the biological relevance of our findings from different angles.
doi:10.3762/bjnano.5.245
PMCID: PMC4273260  PMID: 25551064
hair follicle; nanodermatology; nanoparticle penetration; skin barrier
48.  Inorganic Janus particles for biomedical applications 
Summary
Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.
doi:10.3762/bjnano.5.244
PMCID: PMC4273258  PMID: 25551063
bioimaging (CT; MRI; Multi-photon); hetero-nanoparticles; Janus particles; protein corona; synthesis
49.  Gas sensing properties of nanocrystalline diamond at room temperature 
Summary
This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance), was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop.
doi:10.3762/bjnano.5.243
PMCID: PMC4273209  PMID: 25551062
gas sensor; integrator; interdigitated electrodes; nanocrystalline diamond; response
50.  Liquid-phase exfoliated graphene: functionalization, characterization, and applications 
Summary
The development of chemical strategies to render graphene viable for incorporation into devices is a great challenge. A promising approach is the production of stable graphene dispersions from the exfoliation of graphite in water and organic solvents. The challenges involve the production of a large quantity of graphene sheets with tailored distribution in thickness, size, and shape. In this review, we present some of the recent efforts towards the controlled production of graphene in dispersions. We also describe some of the chemical protocols that have provided insight into the vast organic chemistry of the single atomic plane of graphite. Controlled chemical reactions applied to graphene are expected to significantly improve the design of hierarchical, functional platforms, driving the inclusion of graphene into advanced functional materials forward.
doi:10.3762/bjnano.5.242
PMCID: PMC4273250  PMID: 25551061
applications; dispersions; graphene; organic functionalization; ultrasonication

Results 26-50 (611)